EXERCISE :- 8.1

Question 1

Expand the expression $(1-2 x)^{5}$
By using Binomial Theorem, the expression $(1-2 x)^{5}$ can be expanded as

$$
\begin{aligned}
& (1-2 \mathrm{x})^{5} \\
& ={ }^{5} \mathrm{C}_{0}(1)^{5}-{ }^{5} \mathrm{C}_{1}(1)^{4}(2 \mathrm{x})+{ }^{5} \mathrm{C}_{2}(1)^{3}(2 \mathrm{x})^{2}-{ }^{5} \mathrm{C}_{3}(1)^{2}(2 \mathrm{x})^{3}+{ }^{5} \mathrm{C}_{4}(1)^{1}(2 \mathrm{x})^{4}-{ }^{5} \mathrm{C}_{5}(2 \mathrm{x})^{5} \\
& =1-5(2 \mathrm{x})+10\left(4 \mathrm{x}^{2}\right)-10\left(8 \mathrm{x}^{3}\right)+5\left(16 \mathrm{x}^{4}\right)-\left(32 \mathrm{x}^{5}\right) \\
& =1-10 \mathrm{x}+40 \mathrm{x}^{2}-80 \mathrm{x}^{3}+80 \mathrm{x}^{4}-32 \mathrm{x}^{5}
\end{aligned}
$$

Question 2:

Expand the expression $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$
By using Binomial Theorem, the expression $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$ can be expanded as

$$
\begin{aligned}
\left(\frac{2}{\mathrm{x}}-\frac{\mathrm{x}}{2}\right)^{5}= & { }^{5} \mathrm{C}_{0}\left(\frac{2}{\mathrm{x}}\right)^{5}-{ }^{5} \mathrm{C}_{1}\left(\frac{2}{\mathrm{x}}\right)^{4}\left(\frac{\mathrm{x}}{2}\right)+{ }^{5} \mathrm{C}_{2}\left(\frac{2}{\mathrm{x}}\right)^{3}\left(\frac{\mathrm{x}}{2}\right)^{2} \\
& -{ }^{5} \mathrm{C}_{3}\left(\frac{2}{\mathrm{x}}\right)^{2}\left(\frac{\mathrm{x}}{2}\right)^{3}+{ }^{5} \mathrm{C}_{4}\left(\frac{2}{\mathrm{x}}\right)\left(\frac{\mathrm{x}}{2}\right)^{4}-{ }^{5} \mathrm{C}_{5}\left(\frac{\mathrm{x}}{2}\right)^{5} \\
= & \frac{32}{\mathrm{x}^{5}}-5\left(\frac{16}{\mathrm{x}^{4}}\right)\left(\frac{\mathrm{x}}{2}\right)+10\left(\frac{8}{\mathrm{x}^{3}}\right)\left(\frac{\mathrm{x}^{2}}{4}\right)-10\left(\frac{4}{\mathrm{x}^{2}}\right)\left(\frac{\mathrm{x}^{3}}{8}\right)+5\left(\frac{2}{\mathrm{x}}\right)\left(\frac{\mathrm{x}^{4}}{16}\right)-\frac{\mathrm{x}^{5}}{32} \\
= & \frac{32}{\mathrm{x}^{5}}-\frac{40}{\mathrm{x}^{3}}+\frac{20}{\mathrm{x}}-5 \mathrm{x}+\frac{5}{8} \mathrm{x}^{3}-\frac{\mathrm{x}^{5}}{32}
\end{aligned}
$$

Question 3:

Expand the expression $(2 x-3)^{6}$
By using Binomial Theorem, the expression $(2 x-3)^{6}$ can be expanded as

Where You Get Complete Knowledge

$$
\begin{aligned}
(2 x-3)^{6}= & { }^{6} \mathrm{C}_{0}(2 x)^{6}-{ }^{6} \mathrm{C}_{1}(2 x)^{5}(3)+{ }^{6} \mathrm{C}_{2}(2 x)^{4}(3)^{2}-{ }^{6} \mathrm{C}_{3}(2 x)^{3}(3)^{3} \\
& +{ }^{6} \mathrm{C}_{+}(2 x)^{2}(3)^{4}-{ }^{6} \mathrm{C}_{5}(2 x)(3)^{5}+{ }^{6} \mathrm{C}_{6}(3)^{6} \\
= & 64 x^{6}-6\left(32 x^{5}\right)(3)+15\left(16 x^{4}\right)(9)-20\left(8 x^{3}\right)(27) \\
& +15\left(4 x^{2}\right)(81)-6(2 x)(243)+729 \\
= & 64 x^{6}-576 x^{5}+2160 x^{4}-4320 x^{3}+4860 x^{2}-2916 x+729
\end{aligned}
$$

Question 4:

Expand the expression $\left(\frac{\mathrm{x}}{3}+\frac{1}{\mathrm{x}}\right)^{5}$
By using Binomial Theorem, the expression $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$ can be expanded as

$$
\begin{aligned}
\left(\frac{\mathrm{x}}{3}+\frac{1}{\mathrm{x}}\right)^{5} & ={ }^{5} \mathrm{C}_{0}\left(\frac{\mathrm{x}}{3}\right)^{5}+{ }^{5} \mathrm{C}_{1}\left(\frac{\mathrm{x}}{3}\right)^{4}\left(\frac{1}{\mathrm{x}}\right)+{ }^{5} \mathrm{C}_{2}\left(\frac{\mathrm{x}}{3}\right)^{3}\left(\frac{1}{\mathrm{x}}\right)^{2} \\
& +{ }^{5} \mathrm{C}_{3}\left(\frac{\mathrm{x}}{3}\right)^{2}\left(\frac{1}{\mathrm{x}}\right)^{3}+{ }^{5} \mathrm{C}_{4}\left(\frac{\mathrm{x}}{3}\right)\left(\frac{1}{\mathrm{x}}\right)^{4}+{ }^{5} \mathrm{C}_{5}\left(\frac{1}{\mathrm{x}}\right)^{5} \\
& =\frac{\mathrm{x}^{5}}{243}+5\left(\frac{\mathrm{x}^{4}}{81}\right)\left(\frac{1}{\mathrm{x}}\right)+10\left(\frac{\mathrm{x}^{3}}{27}\right)\left(\frac{1}{\mathrm{x}^{2}}\right)+10\left(\frac{\mathrm{x}^{2}}{9}\right)\left(\frac{1}{\mathrm{x}^{3}}\right)+5\left(\frac{\mathrm{x}}{3}\right)\left(\frac{1}{\mathrm{x}^{4}}\right)+\frac{1}{\mathrm{x}^{5}} \\
& =\frac{\mathrm{x}^{5}}{243}+\frac{5 \mathrm{x}^{3}}{81}+\frac{10 \mathrm{x}}{27}+\frac{10}{9 \mathrm{x}}+\frac{5}{3 \mathrm{x}^{3}}+\frac{1}{\mathrm{x}^{5}}
\end{aligned}
$$

Question 5:

Expand $\left(x+\frac{1}{x}\right)^{6}$
By using Binomial Theorem, the expression $\left(x+\frac{1}{x}\right)^{6}$ can be expanded as

Where You Get Complete Knowledge

$$
\begin{aligned}
\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{6}= & { }^{6} \mathrm{C}_{0}(\mathrm{x})^{6}+{ }^{6} \mathrm{C}_{1}(\mathrm{x})^{5}\left(\frac{1}{\mathrm{x}}\right)+{ }^{6} \mathrm{C}_{2}(\mathrm{x})^{4}\left(\frac{1}{\mathrm{x}}\right)^{2} \\
& +{ }^{6} \mathrm{C}_{3}(\mathrm{x})^{3}\left(\frac{1}{\mathrm{x}}\right)^{3}+{ }^{6} \mathrm{C}_{4}(\mathrm{x})^{2}\left(\frac{1}{\mathrm{x}}\right)^{4}+{ }^{6} \mathrm{C}_{5}(\mathrm{x})\left(\frac{1}{\mathrm{x}}\right)^{5}+{ }^{6} \mathrm{C}_{6}\left(\frac{1}{\mathrm{x}}\right)^{6} \\
= & \mathrm{x}^{6}+6(\mathrm{x})^{5}\left(\frac{1}{\mathrm{x}}\right)+15(\mathrm{x})^{4}\left(\frac{1}{\mathrm{x}^{2}}\right)+20(\mathrm{x})^{3}\left(\frac{1}{\mathrm{x}^{3}}\right)+15(\mathrm{x})^{2}\left(\frac{1}{\mathrm{x}^{4}}\right)+6(\mathrm{x})\left(\frac{1}{\mathrm{x}^{5}}\right)+\frac{1}{\mathrm{x}^{6}} \\
= & \mathrm{x}^{6}+6 \mathrm{x}^{4}+15 \mathrm{x}^{2}+20+\frac{15}{\mathrm{x}^{2}}+\frac{6}{\mathrm{x}^{4}}+\frac{1}{\mathrm{x}^{6}}
\end{aligned}
$$

Question 6:

Using Binomial Theorem, evaluate (96) ${ }^{3}$

96 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.

It can be written that, $96=100-4$

$$
\begin{aligned}
\therefore(96)^{3} & =(100-4)^{3} \\
& ={ }^{3} \mathrm{C}_{0}(100)^{3}-{ }^{3} \mathrm{C}_{1}(100)^{2}(4)+{ }^{3} \mathrm{C}_{2}(100)(4)^{2}-{ }^{3} \mathrm{C}_{3}(4)^{3} \\
& =(100)^{3}-3(100)^{2}(4)+3(100)(4)^{2}-(4)^{3} \\
& =1000000-120000+4800-64 \\
& =884736
\end{aligned}
$$

Question 7:

Using Binomial Theorem, evaluate (102) ${ }^{5}$
102 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, $102=100+2$

$$
\begin{aligned}
&={ }^{5} \mathrm{C}_{0}(100)^{5}+{ }^{5} \mathrm{C}_{1}(100)^{4}(2)+{ }^{5} \mathrm{C}_{2}(100)^{3}(2)^{2}+{ }^{5} \mathrm{C}_{3}(100)^{2}(2)^{3} \\
&+{ }^{5} \mathrm{C}_{4}(100)(2)^{4}+{ }^{5} \mathrm{C}_{5}(2)^{5} \\
&=(100)^{5}+5(100)^{4}(2)+10(100)^{3}(2)^{2}+10(100)^{2}(2)^{3}+5(100)(2)^{4}+(2)^{5} \\
&= 10000000000+1000000000+40000000+800000+8000+32 \\
&= 11040808032
\end{aligned}
$$

Question 8:

Using Binomial Theorem, evaluate (101) ${ }^{4}$
101 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, $101=100+1$

$$
\begin{aligned}
\therefore(101)^{4} & =(100+1)^{4} \\
& ={ }^{4} \mathrm{C}_{0}(100)^{4}+{ }^{4} \mathrm{C}_{1}(100)^{3}(1)+{ }^{4} \mathrm{C}_{2}(100)^{2}(1)^{2}+{ }^{4} \mathrm{C}_{3}(100)(1)^{3}+{ }^{4} \mathrm{C}_{4}(1)^{4} \\
& =(100)^{4}+4(100)^{3}+6(100)^{2}+4(100)+(1)^{4} \\
& =100000000+4000000+60000+400+1 \\
& =104060401
\end{aligned}
$$

Question 9:

Using Binomial Theorem, evaluate (99) ${ }^{5}$
99 can be written as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, $99=100-1$

$$
\begin{aligned}
= & { }^{5} \mathrm{C}_{0}(100)^{5}-{ }^{5} \mathrm{C}_{1}(100)^{4}(1)+{ }^{5} \mathrm{C}_{2}(100)^{3}(1)^{2}-{ }^{5} \mathrm{C}_{3}(100)^{2}(1)^{3} \\
& +{ }^{5} \mathrm{C}_{4}(100)(1)^{4}-{ }^{5} \mathrm{C}_{5}(1)^{5} \\
= & (100)^{5}-5(100)^{4}+10(100)^{3}-10(100)^{2}+5(100)-1 \\
= & 10000000000-500000000+10000000-100000+500-1 \\
= & 10010000500-500100001 \\
= & 9509900499
\end{aligned}
$$

Question 10:

Using Binomial Theorem, indicate which number is larger (1.1) ${ }^{10000}$ or 1000.
By splitting 1.1 and then applying Binomial Theorem, the first few terms of $(1.1)^{10000}$ can be obtained as

$$
\begin{aligned}
(1.1)^{10000} & =(1+0.1)^{10000} \\
& ={ }^{10000} \mathrm{C}_{0}+{ }^{10000} \mathrm{C}_{1}(1.1)+\text { Other positive terms } \\
& =1+10000 \times 1.1+\text { Other positive terms } \\
& =1+11000+\text { Other positive terms } \\
& >1000
\end{aligned}
$$

Hence, $(1.1)^{10000}>1000$

Question 11:

Find $(a+b)^{4}-(a-b)^{4}$. Hence, evaluate $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$.
Using Binomial Theorem, the expressions, $(a+b)^{4}$ and $(a-b)^{4}$, can be expanded as

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
& (\mathrm{a}+\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4} \\
& (\mathrm{a}-\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4} \\
& \begin{aligned}
\therefore(\mathrm{a}+\mathrm{b})^{4}-(\mathrm{a}-\mathrm{b})^{4} & ={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4} \\
& -\left[{ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}\right] \\
& = \\
& 2\left({ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}\right)=2\left(4 \mathrm{a}^{3} \mathrm{~b}+4 \mathrm{ab}^{3}\right) \\
= & 8 \mathrm{ab}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)
\end{aligned}
\end{aligned}
$$

By putting $\mathrm{a}=\sqrt{3}$ and $\mathrm{b}=\sqrt{2}$, we obtain

$$
\begin{aligned}
(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4} & =8(\sqrt{3})(\sqrt{2})\left\{(\sqrt{3})^{2}+(\sqrt{2})^{2}\right\} \\
& =8(\sqrt{6})\{3+2\}=40 \sqrt{6}
\end{aligned}
$$

Question 12:

Find $(x+1)^{6}+(x-1)^{6}$. Hence or otherwise evaluate $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$.
Using Binomial Theorem, the expressions, $(x+1)^{6}$ and $(x-1)^{6}$, can be expanded as

$$
\begin{aligned}
& (\mathrm{x}+1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6} \\
& (\mathrm{x}-1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}-{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }_{6} \mathrm{C}_{6} \\
& \therefore(\mathrm{x}+1)^{6}+(\mathrm{x}-1)^{6}=2\left[{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{6}\right] \\
& \quad=2\left[\mathrm{x}^{6}+15 \mathrm{x}^{4}+15 \mathrm{x}^{2}+1\right]
\end{aligned}
$$

By putting $\mathrm{x}=\sqrt{2}$, we obtain

$$
\begin{aligned}
(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6} & =2\left[(\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})^{2}+1\right] \\
& =2(8+15 \times 4+15 \times 2+1) \\
& =2(8+60+30+1) \\
& =2(99)=198
\end{aligned}
$$

Question 13:

Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer.

In order to show that $9^{n+1}-8 n-9$ is divisible by 64 , it has to be proved that, $9^{n+1}-8 n-9=64 k$, where k is some natural number

By Binomial Theorem,

$$
(1+\mathrm{a})^{\mathrm{m}}={ }^{\mathrm{m}} \mathrm{C}_{0}+{ }^{\mathrm{m}} \mathrm{C}_{1} \mathrm{a}+{ }^{\mathrm{m}} \mathrm{C}_{2} \mathrm{a}^{2}+\ldots+{ }^{\mathrm{m}} \mathrm{C}_{\mathrm{m}} \mathrm{a}^{\mathrm{m}}
$$

For $a=8$ and $m=n+1$, we obtain

$$
\begin{aligned}
& (1+8)^{n+1}={ }^{n+1} C_{0}+{ }^{n+1} C_{1}(8)+{ }^{n+1} C_{2}(8)^{2}+\ldots+{ }^{n+1} C_{n+1}(8)^{n+1} \\
& \Rightarrow 9^{n+1}=1+(n+1)(8)+8^{2}\left[{ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8+\ldots+{ }^{n+1} C_{n+1}(8)^{n-1}\right] \\
& \Rightarrow 9^{n+1}=9+8 n+64\left[{ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8+\ldots+{ }^{n+1} C_{n+1}(8)^{n-1}\right] \\
& \Rightarrow 9^{n+1}-8 n-9=64 k \text {, where } k={ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8+\ldots+{ }^{n+1} C_{n+1}(8)^{n-1} \text { is a natural number }
\end{aligned}
$$

Thus, $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer.

Question 14:

Prove that $\sum_{r=0}^{n} 3^{r}{ }^{n} C_{r}=4^{n}$.
By Binomial Theorem,

$$
\sum_{r=0}^{n}{ }^{n} C_{r} a^{n-r} b^{r}=(a+b)^{n}
$$

By putting $b=3$ and $a=1$ in the above equation, we obtain

$$
\begin{aligned}
& \sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(1)^{\mathrm{n}-\mathrm{r}}(3)^{\mathrm{r}}=(1+3)^{\mathrm{n}} \\
& \Rightarrow \sum_{\mathrm{r}=0}^{\mathrm{n}} 3^{r}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=4^{\mathrm{n}}
\end{aligned}
$$

Hence, proved.

EXERCISE :- 8.2

Question 1:

Find the coefficient of x^{5} in $(x+3)^{8}$

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$ 。

Assuming that x^{5} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+3)^{8}$, we obtain

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{8} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{8-\mathrm{r}}(3)^{\mathrm{r}}
$$

Comparing the indices of x in x^{5} and in T_{r+1}, we obtain
$r=3$

Thus, the coefficient of x^{5} is ${ }^{8} \mathrm{C}_{3}(3)^{3}=\frac{8!}{3!5!} \times 3^{3}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2.5!} \cdot 3^{3}=1512$

Question 2:

Find the coefficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$ 。

Assuming that $a^{5} b^{7}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion $(a-2 b)^{12}$, we obtain
$T_{r+1}={ }^{12} C_{r}(a)^{12-r}(-2 b)^{r}={ }^{12} C_{r}(-2)^{r}(a)^{12-r}(b)^{r}$

Comparing the indices of a and b in $a^{5} \mathrm{~b}^{7}$ and in T_{r+1}, we obtain
$r=7$

Thus, the coefficient of $a^{5} b^{7}$ is

$$
{ }^{12} C_{7}(-2)^{7}=-\frac{12!}{7!5!} \cdot 2^{7}=-\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8.7!}{5 \cdot 4 \cdot 3 \cdot 2.7!} \cdot 2^{7}=-(792)(128)=-101376
$$

Question 3:

Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$
It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term $\}$ in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{t}}$.

Thus, the general term in the expansion of $\left(x^{2}-y^{6}\right)$ is

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{6} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{2}\right)^{6-\mathrm{r}}(-\mathrm{y})^{r}=(-1)^{\mathrm{r}}{ }^{6} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{12-2 \mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}
$$

Question 4:

Write the general term in the expansion of $\left(x^{2}-y x\right)^{12}, x \neq 0$
It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term $\}$ in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.

Thus, the general term in the expansion of $\left(x^{2}-y x\right)^{12}$ is

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{12} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{2}\right)^{12-\mathrm{r}}(-\mathrm{yx})^{\mathrm{r}}=(-1)^{\mathrm{r}}{ }^{12} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{24-2 \mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}=(-1)^{\mathrm{r}}{ }^{12} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{24-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}
$$

Question 5:

Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$.
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.

Thus, the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$ is

$$
T_{4}=T_{3+1}={ }^{12} C_{3}(x)^{12-3}(-2 y)^{3}=(-1)^{3} \cdot \frac{12!}{3!9!} \cdot x^{9} \cdot(2)^{3} \cdot y^{3}=-\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot(2)^{3} x^{9} y^{3}=-1760 x^{9} y^{3}
$$

Question 6:

Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$

Thus, $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ is

$$
\begin{array}{rlr}
\mathrm{T}_{13}=\mathrm{T}_{12+1} & ={ }^{18} \mathrm{C}_{12}(9 \mathrm{x})^{18-12}\left(-\frac{1}{3 \sqrt{\mathrm{x}}}\right)^{12} \\
& =(-1)^{12} \frac{18!}{12!6!}(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{\mathrm{x}}}\right)^{12} \\
& =\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13.12!}{12!.6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^{6} \cdot\left(\frac{1}{x^{6}}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right) \quad\left[9^{6}=\left(3^{2}\right)^{6}=3^{12}\right] \\
& =18564 &
\end{array}
$$

Question 7:

Find the middle terms in the expansions of $\left(3-\frac{x^{3}}{6}\right)^{7}$
It is known that in the expansion of $(a+b)^{n}$, if n is odd, then there are two middle terms, namely, $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term and $\left(\frac{\mathrm{n}+1}{2}+1\right)^{\text {th }}$ term.

Therefore, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $\left(\frac{7+1}{2}\right)^{\text {th }}=4^{\text {th }}$ term and

$$
\begin{aligned}
& \left(\frac{7+1}{2}+1\right)^{\mathrm{th}}=5^{\text {th }} \\
& \text { term } \\
& \begin{aligned}
\mathrm{T}_{4}=\mathrm{T}_{3+1} & ={ }^{7} \mathrm{C}_{3}(3)^{7-3}\left(-\frac{\mathrm{x}^{3}}{6}\right)^{3}=(-1)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{\mathrm{x}^{9}}{6^{3}} \\
& =-\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 4!} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot \mathrm{x}^{9}=-\frac{105}{8} \mathrm{x}^{9} \\
\mathrm{~T}_{5}=\mathrm{T}_{4+1} & ={ }^{7} \mathrm{C}_{4}(3)^{7-4}\left(-\frac{\mathrm{x}^{3}}{6}\right)^{4}=(-1)^{4} \frac{7!}{4!3!}(3)^{3} \cdot \frac{\mathrm{x}^{12}}{6^{4}} \\
& =\frac{7 \cdot 6 \cdot 5 \cdot 4!}{4!\cdot 3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot \mathrm{x}^{12}=\frac{35}{48} \mathrm{x}^{12}
\end{aligned}
\end{aligned}
$$

Thus, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$.

Question 8:

Find the middle terms in the expansions of $\left(\frac{x}{3}+9 y\right)^{10}$
It is known that in the expansion $(a+b)^{n}$, if n is even, then the middle term is $\left(\frac{\mathrm{n}}{2}+1\right)^{\mathrm{h}}$ term.

Therefore, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{\text {th }}=6^{\text {th }}$ term

$$
\begin{array}{rll}
\mathrm{T}_{6}=\mathrm{T}_{5+1} & ={ }^{10} \mathrm{C}_{5}\left(\frac{\mathrm{x}}{3}\right)^{10-5}(9 \mathrm{y})^{5}=\frac{10!}{5!5!} \cdot \frac{\mathrm{x}^{5}}{3^{5}} \cdot 9^{5} \cdot \mathrm{y}^{5} & \\
& =\frac{10.9 \cdot 8 \cdot 7 \cdot 6.5!}{5 \cdot 4 \cdot 3 \cdot 2.5!} \cdot \frac{1}{3^{5}} \cdot 3^{10} \cdot \mathrm{x}^{5} \mathrm{y}^{5} & {\left[9^{5}=\left(3^{2}\right)^{5}=3^{10}\right]} \\
& =252 \times 3^{5} \cdot \mathrm{x}^{5} \cdot \mathrm{y}^{5}=61236 \mathrm{x}^{5} \mathrm{y}^{5} &
\end{array}
$$

Thus, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $61236 x^{5} y^{5}$.

Question 9:

In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^{m} and a^{n} are equal.

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.

Assuming that a^{m} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(1+a)^{m+n}$, we obtain

$$
T_{r+1}={ }^{m+n} C_{r}(1)^{m+n-r}(a)^{r}={ }^{m+n} C_{r} a^{r}
$$

Comparing the indices of a in a^{m} and in T_{r+1}, we obtain
$r=m$

Therefore, the coefficient of a^{m} is
${ }^{m+n} C_{m}=\frac{(m+n)!}{m!(m+n-m)!}=\frac{(m+n)!}{m!n!}$

Assuming that a^{n} occurs in the $(k+1)^{\text {th }}$ term of the expansion $(1+a)^{m+n}$, we obtain

$$
T_{k+1}={ }^{m+n} C_{k}(1)^{m+n-k}(a)^{k}={ }^{m+n} C_{k}(a)^{k}
$$

Comparing the indices of a in a^{n} and in T_{k+1}, we obtain
$k=n$

Therefore, the coefficient of a^{n} is

$$
\begin{equation*}
{ }^{m+n} C_{n}=\frac{(m+n)!}{n!(m+n-n)!}=\frac{(m+n)!}{n!m!} \tag{2}
\end{equation*}
$$

Thus, from (1) and (2), it can be observed that the coefficients of a^{m} and a^{n} in the expansion of $(1+a)^{m+n}$ are equal.

Question 10:

The coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ are in the ratio 1:3:5. Find n and r.

It is known that $(k+1)^{\text {th }}$ term, $\left(T_{k+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{a}^{\mathrm{n}-\mathrm{k}} \mathrm{b}^{\mathrm{k}}$ 。

Therefore, $(r-1)^{\text {th }}$ term in the expansion of $(x+$
$1)^{n}$ is $\mathrm{T}_{\mathrm{r}-1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}(\mathrm{x})^{\mathrm{n}-(\mathrm{r}-2)}(1)^{(\mathrm{r}-2)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} \mathrm{X}^{\mathrm{n}-\mathrm{r}+2}$
$r^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is $T_{r}={ }^{n} C_{r-1}(x)^{n-(r-1)}(1)^{(r-1)}={ }^{n} C_{r-1} x^{n-r+1}$ $(r+1)^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{\mathrm{n}-\mathrm{r}}(1)^{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}}$

Therefore, the coefficients of the $(r-1)^{\mathrm{h}}, r^{\mathrm{h}}$, and $(r+1)^{\mathrm{h}}$ terms in the expansion of $(x+$ 1)"are ${ }^{n} C_{r-2},{ }^{n} C_{r-1}$, and ${ }^{n} C_{r}$ respectively. Since these coefficients are in the ratio 1:3:5, we obtain

$$
\begin{aligned}
&{ }^{\frac{}{}{ }^{n} C_{r-2}}=\frac{1}{3} \text { and } \frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r} C_{r}}=\frac{3}{5} \\
& \begin{aligned}
&{ }^{n} C_{r-2} \\
&{ }^{n} C_{r-1} \frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!}
\end{aligned}=\frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)(n-r+1)!} \\
&=\frac{r-1}{n-r+2}
\end{aligned}
$$

$$
\therefore \frac{\mathrm{r}-1}{\mathrm{n}-\mathrm{r}+2}=\frac{1}{3}
$$

$$
\Rightarrow 3 \mathrm{r}-3=\mathrm{n}-\mathrm{r}+2
$$

$$
\begin{equation*}
\Rightarrow n-4 r+5=0 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!} & =\frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!} \\
& =\frac{r}{n-r+1}
\end{aligned}
$$

$\therefore \frac{\mathrm{r}}{\mathrm{n}-\mathrm{r}+1}=\frac{3}{5}$
$\Rightarrow 5 \mathrm{r}=3 \mathrm{n}-3 \mathrm{r}+3$
$\Rightarrow 3 \mathrm{n}-8 \mathrm{r}+3=0$

Multiplying (1) by 3 and subtracting it from (2), we obtain
$4 r-12=0$
$\Rightarrow r=3$
Putting the value of r in (1), we obtain
$n-12+5=0$
$\Rightarrow n=7$

Thus, $n=7$ and $r=3$

Question 11:

Prove that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$

Assuming that x^{n} occurs in the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{2 n}$, we obtain

$$
T_{r+1}={ }^{2 n} C_{r}(1)^{2 n-r}(x)^{r}={ }^{2 n} C_{r}(x)^{r}
$$

Comparing the indices of x in x^{n} and in T_{r+1}, we obtain
$r=n$

Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is

$$
\begin{equation*}
{ }^{2 n} C_{n}=\frac{(2 n)!}{n!(2 n-n)!}=\frac{(2 n)!}{n!n!}=\frac{(2 n)!}{(n!)^{2}} \tag{1}
\end{equation*}
$$

Assuming that x^{n} occurs in the $(k+1)^{\text {th }}$ term of the expansion $(1+x)^{2 n-1}$, we obtain

$$
T_{k+1}={ }^{2 n-1} C_{k}(1)^{2 n-1-k}(x)^{k}==^{2 n-1} C_{k}(x)^{k}
$$

Comparing the indices of x in x^{n} and T_{k+1}, we obtain
$k=n$

Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$ is

$$
\begin{align*}
{ }^{2 n-1} C_{n} & =\frac{(2 n-1)!}{n!(2 n-1-n)!}=\frac{(2 n-1)!}{n!(n-1)!} \\
& =\frac{2 n \cdot(2 n-1)!}{2 n \cdot n!(n-1)!}=\frac{(2 n)!}{2 n!n!}=\frac{1}{2}\left[\frac{(2 n)!}{(n!)^{2}}\right] \tag{2}
\end{align*}
$$

From (1) and (2), it is observed that

$$
\begin{aligned}
& \frac{1}{2}\left({ }^{2 n} C_{n}\right)={ }^{2 n-1} C_{n} \\
& \Rightarrow{ }^{2 n} C_{n}=2\left({ }^{2 n-1} C_{n}\right)
\end{aligned}
$$

Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

Hence, proved.

Question 12:

Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$ 。

Assuming that x^{2} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(1+x)^{m}$, we obtain

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{m}} \mathrm{C}_{\mathrm{r}}(1)^{\mathrm{m}-\mathrm{r}}(\mathrm{x})^{\mathrm{r}}={ }^{\mathrm{m}} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{\mathrm{r}}
$$

Comparing the indices of x in x^{2} and in T_{r+1}, we obtain
$r=2$

Therefore, the coefficient of x^{2} is ${ }^{m} \mathrm{C}_{2}$.
It is given that the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
& \therefore C_{2}=6 \\
& \Rightarrow \frac{\mathrm{~m}!}{2!(\mathrm{m}-2)!}=6 \\
& \Rightarrow \frac{\mathrm{~m}(\mathrm{~m}-1)(\mathrm{m}-2)!}{2 \times(\mathrm{m}-2)!}=6 \\
& \Rightarrow \mathrm{~m}(\mathrm{~m}-1)=12 \\
& \Rightarrow \mathrm{~m}^{2}-\mathrm{m}-12=0 \\
& \Rightarrow \mathrm{~m}^{2}-4 \mathrm{~m}+3 \mathrm{~m}-12=0 \\
& \Rightarrow \mathrm{~m}(\mathrm{~m}-4)+3(\mathrm{~m}-4)=0 \\
& \Rightarrow(\mathrm{~m}-4)(\mathrm{m}+3)=0 \\
& \Rightarrow(\mathrm{~m}-4)=0 \text { or }(\mathrm{m}+3)=0 \\
& \Rightarrow \mathrm{~m}=4 \text { or } \mathrm{m}=-3
\end{aligned}
$$

Thus, the positive value of m, for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 , is 4 .

