

EXERCISE- 5.1

Question 1:

Express the given complex number in the form a + ib: $(5i)\left(-\frac{3}{5}i\right)$

$$(5i)\left(\frac{-3}{5}i\right) = -5 \times \frac{3}{5} \times i \times i$$
$$= -3i^{2}$$
$$= -3(-1) \qquad \left[i^{2} = -1\right]$$
$$= 3$$

Question 2:

Express the given complex number in the form a + ib: $i^9 + i^{19}$

$$i^{9} + i^{19} = i^{4 \times 2 + 1} + i^{4 \times 4 + 3}$$

= $(i^{4})^{2} \cdot i + (i^{4})^{4} \cdot i^{3}$
= $1 \times i + 1 \times (-i)$ $[i^{4} = 1, i^{3} = -i]$
= $i + (-i)$
= 0

Question 3:

Express the given complex number in the form a + ib: i^{-39}

$$i^{-39} = i^{-4\times9-3} = (i^4)^{-9} \cdot i^{-3}$$

= $(1)^{-9} \cdot i^{-3}$ $[i^4 = 1]$
= $\frac{1}{i^3} = \frac{1}{-i}$ $[i^3 = -i]$
= $\frac{-1}{i} \times \frac{i}{i}$
= $\frac{-i}{i^2} = \frac{-i}{-1} = i$ $[i^2 = -1]$

Question 4:

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)

$$3(7+i7)+i(7+i7) = 21+21i+7i+7i^{2}$$

= 21+28i+7×(-1) [:: i² = -1]
= 14+28i

Question 5:

Express the given complex number in the form a + ib: (1 - i) - (-1 + i6)

$$(1-i) - (-1+i6) = 1 - i + 1 - 6i$$

= 2 - 7i

Question 6:

Express the given complex number in the form a + ib: $\left(\frac{1}{5} + i\frac{2}{5}\right) - \left(4 + i\frac{5}{2}\right)$

$$\begin{pmatrix} \frac{1}{5} + i\frac{2}{5} \\ - \left(4 + i\frac{5}{2}\right) \\ = \frac{1}{5} + \frac{2}{5}i - 4 - \frac{5}{2}i \\ = \left(\frac{1}{5} - 4\right) + i\left(\frac{2}{5} - \frac{5}{2}\right) \\ = \frac{-19}{5} + i\left(\frac{-21}{10}\right) \\ = \frac{-19}{5} - \frac{21}{10}i$$

Question 7:

Express the given complex number in the form a + ib: $\left[\left(\frac{1}{3} + i\frac{7}{3}\right) + \left(4 + i\frac{1}{3}\right)\right] - \left(-\frac{4}{3} + i\right)$

EDUCATION CENTRE
Where You Get Complete Knowledge

$$\left[\left(\frac{1}{3}+i\frac{7}{3}\right)+\left(4+i\frac{1}{3}\right)\right]-\left(\frac{-4}{3}+i\right)$$

$$=\frac{1}{3}+\frac{7}{3}i+4+\frac{1}{3}i+\frac{4}{3}-i$$

$$=\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right)$$

$$=\frac{17}{3}+i\frac{5}{3}$$

Question 8:

Express the given complex number in the form a + ib: $(1 - i)^4$

$$(1-i)^{4} = \left[(1-i)^{2} \right]^{2}$$

= $\left[1^{2} + i^{2} - 2i \right]^{2}$
= $\left[1 - 1 - 2i \right]^{2}$
= $(-2i)^{2}$
= $(-2i) \times (-2i)$
= $4i^{2} = -4$ $\left[i^{2} = -1 \right]$

Question 9:

Express the given complex number in the form a + ib: $\left(\frac{1}{3} + 3i\right)^3$

$$\left(\frac{1}{3}+3i\right)^{3} = \left(\frac{1}{3}\right)^{3} + (3i)^{3} + 3\left(\frac{1}{3}\right)(3i)\left(\frac{1}{3}+3i\right)$$
$$= \frac{1}{27} + 27i^{3} + 3i\left(\frac{1}{3}+3i\right)$$
$$= \frac{1}{27} + 27(-i) + i + 9i^{2} \qquad \begin{bmatrix}i^{3} = -i\end{bmatrix}$$
$$= \frac{1}{27} - 27i + i - 9 \qquad \begin{bmatrix}i^{2} = -1\end{bmatrix}$$
$$= \left(\frac{1}{27} - 9\right) + i(-27 + 1)$$
$$= \frac{-242}{27} - 26i$$

Express the given complex number in the form a + ib: $\left(-2 - \frac{1}{3}i\right)^3$

$$\left(-2 - \frac{1}{3}i\right)^3 = (-1)^3 \left(2 + \frac{1}{3}i\right)^3$$

$$= -\left[2^3 + \left(\frac{i}{3}\right)^3 + 3(2)\left(\frac{i}{3}\right)\left(2 + \frac{i}{3}\right)\right]$$

$$= -\left[8 + \frac{i^3}{27} + 2i\left(2 + \frac{i}{3}\right)\right]$$

$$= -\left[8 - \frac{i}{27} + 4i + \frac{2i^2}{3}\right] \qquad [i^3 = -i]$$

$$= -\left[8 - \frac{i}{27} + 4i - \frac{2}{3}\right] \qquad [i^2 = -1]$$

$$= -\left[\frac{22}{3} + \frac{107i}{27}\right]$$

$$= -\frac{22}{3} - \frac{107}{27}i$$

Question 11:

Find the multiplicative inverse of the complex number 4 - 3i

Let
$$z = 4 - 3i$$

Then,
$$\overline{z} = 4 + 3i$$
 and $|z|^2 = 4^2 + (-3)^2 = 16 + 9 = 25$

Therefore, the multiplicative inverse of 4 - 3i is given by

$$z^{-1} = \frac{\overline{z}}{\left|z\right|^2} = \frac{4+3i}{25} = \frac{4}{25} + \frac{3}{25}i$$

Question 12:

Find the multiplicative inverse of the complex number $\sqrt{5} + 3i$

Let
$$z = \sqrt{5} + 3i$$

Created By Kulbhushan

Therefore, the multiplicative inverse of $\sqrt{5} + 3i$ is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{\sqrt{5} - 3i}{14} = \frac{\sqrt{5}}{14} - \frac{3i}{14}$$

Question 13:

Find the multiplicative inverse of the complex number -i

Let z = -i

Then, $\overline{z} = i$ and $|z|^2 = 1^2 = 1$

Therefore, the multiplicative inverse of -i is given by

 $z^{-1} = \frac{\overline{z}}{\left|z\right|^2} = \frac{i}{1} = i$

Question 14:

Express the following expression in the form of a + ib.

$$\frac{\left(3+i\sqrt{5}\right)\left(3-i\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}i\right)-\left(\sqrt{3}-i\sqrt{2}\right)}$$

EDUCATION CENTRE Where You Get Complete Knowledge $\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-i\sqrt{2})}$ $=\frac{(3)^{2}-(i\sqrt{5})^{2}}{\sqrt{3}+\sqrt{2}i-\sqrt{3}+\sqrt{2}i} \qquad [(a+b)(a-b)=a^{2}-b^{2}]$ $=\frac{9-5i^{2}}{2\sqrt{2}i}$ $=\frac{9-5(-1)}{2\sqrt{2}i} \qquad [i^{2}=-1]$ $=\frac{9+5}{2\sqrt{2}i} \times \frac{i}{i}$ $=\frac{14i}{2\sqrt{2}(-1)}$ $=\frac{-7i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ $=\frac{-7\sqrt{2}i}{2}$ EXERCISE- 5.2

Question 1:

Find the modulus and the argument of the complex number $z = -1 - i\sqrt{3}$

 $z = -1 - i\sqrt{3}$

Let $r\cos\theta = -1$ and $r\sin\theta = -\sqrt{3}$

On squaring and adding, we obtain

$$(r \cos \theta)^{2} + (r \sin \theta)^{2} = (-1)^{2} + (-\sqrt{3})^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 3$$

$$\Rightarrow r^{2} = 4 \qquad [\cos^{2} \theta + \sin^{2} \theta = 1]$$

$$\Rightarrow r = \sqrt{4} = 2 \qquad [Conventionally, r > 0]$$

$$\therefore \text{ Modulus} = 2$$

$$\therefore 2 \cos \theta = -1 \text{ and } 2 \sin \theta = -\sqrt{3}$$

$$\Rightarrow \cos \theta = \frac{-1}{2} \text{ and } \sin \theta = \frac{-\sqrt{3}}{2}$$

Created By Kulbhushan

Since both the values of $\sin \theta$ and $\cos \theta$ are negative and $\sin \theta$ and $\cos \theta$ are negative in III quadrant,

Argument =
$$-\left(\pi - \frac{\pi}{3}\right) = \frac{-2\pi}{3}$$

Thus, the modulus and argument of the complex number $-1-\sqrt{3}i$ are 2 and $\frac{-2\pi}{3}$ respectively.

Question 2:

Find the modulus and the argument of the complex number $z = -\sqrt{3} + i$

$$z = -\sqrt{3} + i$$

Let $r\cos\theta = -\sqrt{3}$ and $r\sin\theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = \left(-\sqrt{3}\right)^{2} + 1^{2}$$

$$\Rightarrow r^{2} = 3 + 1 = 4 \qquad \left[\cos^{2} \theta + \sin^{2} \theta = 1\right]$$

$$\Rightarrow r = \sqrt{4} = 2 \qquad \left[\text{Conventionally}, r > 0\right]$$

$$\therefore \text{ Modulus } = 2$$

$$\therefore 2 \cos \theta = -\sqrt{3} \text{ and } 2 \sin \theta = 1$$

$$\Rightarrow \cos \theta = \frac{-\sqrt{3}}{2} \text{ and } \sin \theta = \frac{1}{2}$$

$$\therefore \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \qquad \left[\text{As } \theta \text{ lies in the II quadrant}\right]$$

Thus, the modulus and argument of the complex number $-\sqrt{3} + i$ are 2 and $\frac{5\pi}{6}$ respectively.

Question 3:

Convert the given complex number in polar form: 1 - i

1-i

Let $r \cos \theta = 1$ and $r \sin \theta = -1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = l^{2} + (-1)^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = l + l$$

$$\Rightarrow r^{2} = 2$$

$$\Rightarrow r = \sqrt{2} \qquad [Conventionally, r > 0]$$

$$\therefore \sqrt{2} \cos \theta = l \text{ and } \sqrt{2} \sin \theta = -l$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \text{ and } \sin \theta = -\frac{1}{\sqrt{2}}$$

$$\therefore \theta = -\frac{\pi}{4} \qquad [As \ \theta \text{ lies in the IV quadrant}]$$

$$\therefore 1 - i = r\cos\theta + ir\sin\theta = \sqrt{2}\cos\left(-\frac{\pi}{4}\right) + i\sqrt{2}\sin\left(-\frac{\pi}{4}\right) = \sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right]$$

This is the required polar form.

Question 4:

Convert the given complex number in polar form: -1 + i

-1 + i

Let $r \cos \theta = -1$ and $r \sin \theta = 1$

On squaring and adding, we obtain

EDUCATION CENTRE
Where You Get Complete Knowledge

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + 1^{2}$$

 $\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$
 $\Rightarrow r^{2} = 2$
 $\Rightarrow r = \sqrt{2}$ [Conventionally, $r > 0$]
 $\therefore \sqrt{2} \cos \theta = -1$ and $\sqrt{2} \sin \theta = 1$
 $\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}}$ and $\sin \theta = \frac{1}{\sqrt{2}}$
 $\therefore \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$ [As θ lies in the II quadrant]

It can be written,

$$\therefore -1 + i = r\cos\theta + ir\sin\theta = \sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4} = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

This is the required polar form.

Question 5:

Convert the given complex number in polar form: -1 - i

-1 - i

Let $r \cos \theta = -1$ and $r \sin \theta = -1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + (-1)^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$\Rightarrow r^{2} = 2$$

$$\Rightarrow r = \sqrt{2}$$
 [Conventionally, $r > 0$]

$$\therefore \sqrt{2} \cos \theta = -1 \text{ and } \sqrt{2} \sin \theta = -1$$

$$\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}} \text{ and } \sin \theta = -\frac{1}{\sqrt{2}}$$

$$\therefore \theta = -\left(\pi - \frac{\pi}{4}\right) = -\frac{3\pi}{4}$$
 [As θ lies in the III quadrant]

$$\therefore -1 - i = r\cos\theta + ir\sin\theta = \sqrt{2}\cos\frac{-3\pi}{4} + i\sqrt{2}\sin\frac{-3\pi}{4} = \sqrt{2}\left(\cos\frac{-3\pi}{4} + i\sin\frac{-3\pi}{4}\right)$$
 This is the

required polar form.

Question 6:

Convert the given complex number in polar form: -3

-3

Let $r \cos \theta = -3$ and $r \sin \theta = 0$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-3)^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 9$$

$$\Rightarrow r^{2} = 9$$

$$\Rightarrow r = \sqrt{9} = 3 \qquad [Conventionally, r > 0]$$

$$\therefore 3 \cos \theta = -3 \text{ and } 3 \sin \theta = 0$$

$$\Rightarrow \cos \theta = -1 \text{ and } \sin \theta = 0$$

$$\therefore \theta = \pi$$

$$\therefore -3 = r\cos\theta + ir\sin\theta = 3\cos\pi + \beta\sin\pi = 3(\cos\pi + i\sin\pi)$$

This is the required polar form.

Question 7:

Convert the given complex number in polar form: $\sqrt{3} + i$

$$\sqrt{3} + i$$

Let $r \cos \theta = \sqrt{3}$ and $r \sin \theta = 1$

On squaring and adding, we obtain

EDUCATION CENTRE Where You Get Complete Knowledge $r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (\sqrt{3})^{2} + 1^{2}$ $\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 3 + 1$ $\Rightarrow r^{2} = 4$ $\Rightarrow r = \sqrt{4} = 2$ [Conventionally, r > 0] $\therefore 2 \cos \theta = \sqrt{3}$ and $2 \sin \theta = 1$ $\Rightarrow \cos \theta = \frac{\sqrt{3}}{2}$ and $\sin \theta = \frac{1}{2}$ $\therefore \theta = \frac{\pi}{6}$ [As θ lies in the I quadrant]

$$\therefore \sqrt{3} + i = r\cos\theta + ir\sin\theta = 2\cos\frac{\pi}{6} + i2\sin\frac{\pi}{6} = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

This is the required polar form.

Question 8:

Convert the given complex number in polar form: *i*

i

Let $r \cos\theta = 0$ and $r \sin\theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = 0^{2} + 1^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1$$

$$\Rightarrow r^{2} = 1$$

$$\Rightarrow r = \sqrt{1} = 1$$
 [Conventionally, $r > 0$]

$$\therefore \cos \theta = 0 \text{ and } \sin \theta = 1$$

$$\therefore \theta = \frac{\pi}{2}$$

$$\therefore i = r \cos \theta + ir \sin \theta = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

This is the required polar form.

EXERCISE- 5.3

Question 1:

Solve the equation $x^2 + 3 = 0$

The given quadratic equation is $x^2 + 3 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

a = 1, b = 0, and c = 3

Therefore, the discriminant of the given equation is

 $D = b^2 - 4ac = 0^2 - 4 \times 1 \times 3 = -12$

Therefore, the required solutions are

$$\frac{-b\pm\sqrt{D}}{2a} = \frac{\pm\sqrt{-12}}{2\times1} = \frac{\pm\sqrt{12}i}{2} \qquad \left[\sqrt{-1}=i\right]$$
$$= \frac{\pm2\sqrt{3}i}{2} = \pm\sqrt{3}i$$

Question 2:

Solve the equation $2x^2 + x + 1 = 0$

The given quadratic equation is $2x^2 + x + 1 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = 2, b = 1, and c = 1$$

Therefore, the discriminant of the given equation is

 $D = b^2 - 4ac = 1^2 - 4 \times 2 \times 1 = 1 - 8 = -7$

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times 2} = \frac{-1 \pm \sqrt{7} i}{4} \qquad \qquad \left[\sqrt{-1} = i\right]$$

Question 3:

Solve the equation $x^2 + 3x + 9 = 0$

The given quadratic equation is $x^2 + 3x + 9 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

a = 1, b = 3, and c = 9

Therefore, the discriminant of the given equation is

 $D = b^2 - 4ac = 3^2 - 4 \times 1 \times 9 = 9 - 36 = -27$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-27}}{2(1)} = \frac{-3 \pm 3\sqrt{-3}}{2} = \frac{-3 \pm 3\sqrt{3}i}{2} \qquad \qquad \left[\sqrt{-1} = i\right]$$

Question 4:

Solve the equation $-x^2 + x - 2 = 0$

The given quadratic equation is $-x^2 + x - 2 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

a = -1, b = 1, and c = -2

Therefore, the discriminant of the given equation is

 $D = b^2 - 4ac = 1^2 - 4 \times (-1) \times (-2) = 1 - 8 = -7$

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times (-1)} = \frac{-1 \pm \sqrt{7} i}{-2} \qquad \qquad \left[\sqrt{-1} = i\right]$$

Question 5:

Solve the equation $x^2 + 3x + 5 = 0$

The given quadratic equation is $x^2 + 3x + 5 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

a = 1, b = 3, and c = 5

Therefore, the discriminant of the given equation is

 $D = b^2 - 4ac = 3^2 - 4 \times 1 \times 5 = 9 - 20 = -11$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-11}}{2 \times 1} = \frac{-3 \pm \sqrt{11}i}{2} \qquad \qquad \left[\sqrt{-1} = i\right]$$

Question 6:

Solve the equation $x^2 - x + 2 = 0$

The given quadratic equation is $x^2 - x + 2 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

a = 1, b = -1, and c = 2

Therefore, the discriminant of the given equation is

 $D = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 2 = 1 - 8 = -7$

Question 7:

Solve the equation $\sqrt{2}x^2 + x + \sqrt{2} = 0$

The given quadratic equation is $\sqrt{2}x^2 + x + \sqrt{2} = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = \sqrt{2}$$
, $b = 1$, and $c = \sqrt{2}$

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac = 1^2 - 4 \times \sqrt{2} \times \sqrt{2} = 1 - 8 = -7$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}} = \frac{-1 \pm \sqrt{7} i}{2\sqrt{2}} \qquad \qquad \left[\sqrt{-1} = i\right]$$

Question 8:

Solve the equation $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

The given quadratic equation is $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, we obtain

$$a = \sqrt{3}$$
, $b = -\sqrt{2}$, and $c = 3\sqrt{3}$

Therefore, the discriminant of the given equation is

D =
$$b^2 - 4ac = (-\sqrt{2})^2 - 4(\sqrt{3})(3\sqrt{3}) = 2 - 36 = -34$$

Question 9:

Solve the equation
$$x^2 + x + \frac{1}{\sqrt{2}} = 0$$

$$x^{2} + x + \frac{1}{\sqrt{2}} = 0$$

The given quadratic equation is

This equation can also be written as $\sqrt{2}x^2 + \sqrt{2}x + 1 = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain

$$a = \sqrt{2}$$
, $b = \sqrt{2}$, and $c = 1$

 $\therefore \text{ Discrimin ant } (D) = b^2 - 4ac = (\sqrt{2})^2 - 4 \times (\sqrt{2}) \times 1 = 2 - 4\sqrt{2}$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-\sqrt{2} \pm \sqrt{2 - 4\sqrt{2}}}{2 \times \sqrt{2}} = \frac{-\sqrt{2} \pm \sqrt{2(1 - 2\sqrt{2})}}{2\sqrt{2}}$$
$$= \left(\frac{-\sqrt{2} \pm \sqrt{2}(\sqrt{2\sqrt{2} - 1})i}{2\sqrt{2}}\right) \qquad \left[\sqrt{-1} = i\right]$$
$$= \frac{-1 \pm \left(\sqrt{2\sqrt{2} - 1}\right)i}{2}$$

Question 10:

Solve the equation $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$

EDUCATION CENTRE Where You Get Complete Knowledge

$$x^2 + \frac{x}{\sqrt{2}} + 1 = 0$$

The given quadratic equation is

This equation can also be written as $\sqrt{2}x^2 + x + \sqrt{2} = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain

$$a = \sqrt{2}$$
, $b = 1$, and $c = \sqrt{2}$

: Discriminant (D) = $b^2 - 4ac = 1^2 - 4 \times \sqrt{2} \times \sqrt{2} = 1 - 8 = -7$

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2\sqrt{2}} = \frac{-1 \pm \sqrt{7} i}{2\sqrt{2}} \qquad \qquad \left[\sqrt{-1} = i\right]$$