EDUCATION CENTRE
 Where You Get Complete Knowledge

EXERCISE- 5.1

Question 1:

$$
(5 i)\left(-\frac{3}{5} i\right)
$$

$$
\begin{array}{rlr}
(5 i)\left(\frac{-3}{5} i\right) & =-5 \times \frac{3}{5} \times i \times i & \\
& =-3 i^{2} \\
& =-3(-1) & {\left[i^{2}=-1\right]} \\
& =3
\end{array}
$$

Question 2:

Express the given complex number in the form $a+i b: i^{9}+i^{19}$

$$
\begin{aligned}
i^{9}+i^{19} & =i^{4 \times 2+1}+i^{4 \times 4+3} \\
& =\left(i^{4}\right)^{2} \cdot i+\left(i^{4}\right)^{4} \cdot i^{3} \\
& =1 \times i+1 \times(-i) \quad\left[i^{4}=1, i^{3}=-i\right] \\
& =i+(-i) \\
& =0
\end{aligned}
$$

Question 3:

Express the given complex number in the form $a+i b: i^{-39}$

$$
\begin{array}{rlr}
i^{-39} & =i^{-4 \times 9-3}=\left(i^{4}\right)^{-9} \cdot i^{-3} \\
& =(1)^{-9} \cdot i^{-3} & {\left[i^{4}=1\right]} \\
& =\frac{1}{i^{3}}=\frac{1}{-i} & {\left[i^{3}=-i\right]} \\
& =\frac{-1}{i} \times \frac{i}{i} \\
& =\frac{-i}{i^{2}}=\frac{-i}{-1}=i & {\left[i^{2}=-1\right]}
\end{array}
$$

EDUCATION CENTRE
 Where You Get Complete Knowledge

Express the given complex number in the form $a+i b: 3(7+i 7)+i(7+i 7)$

$$
\begin{aligned}
3(7+i 7)+i(7+i 7) & =21+21 i+7 i+7 i^{2} \\
& =21+28 i+7 \times(-1) \\
& =14+28 i
\end{aligned} \quad\left[\because i^{2}=-1\right]
$$

Question 5:

Express the given complex number in the form $a+i b:(1-i)-(-1+i 6)$

$$
\begin{aligned}
(1-i)-(-1+i 6) & =1-i+1-6 i \\
& =2-7 i
\end{aligned}
$$

Question 6:

Express the given complex number in the form $a+i b:\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$
$\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$
$=\frac{1}{5}+\frac{2}{5} i-4-\frac{5}{2} i$
$=\left(\frac{1}{5}-4\right)+i\left(\frac{2}{5}-\frac{5}{2}\right)$
$=\frac{-19}{5}+i\left(\frac{-21}{10}\right)$
$=\frac{-19}{5}-\frac{21}{10} i$
Question 7:
Express the given complex number in the form $a+i b:\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)$
$\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(\frac{-4}{3}+i\right)$

$$
=\frac{1}{3}+\frac{7}{3} i+4+\frac{1}{3} i+\frac{4}{3}-i
$$

$$
=\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right)
$$

$$
=\frac{17}{3}+i \frac{5}{3}
$$

Question 8:

Express the given complex number in the form $a+i b:(1-i)^{4}$

$$
\begin{aligned}
(1-i)^{4} & =\left[(1-i)^{2}\right]^{2} \\
& =\left[1^{2}+i^{2}-2 i\right]^{2} \\
& =[1-1-2 i]^{2} \\
& =(-2 i)^{2} \\
& =(-2 i) \times(-2 i) \\
& =4 i^{2}=-4
\end{aligned}
$$

Question 9:

Express the given complex number in the form $a+i b:\left(\frac{1}{3}+3 i\right)^{3}$

$$
\begin{array}{rll}
\left(\frac{1}{3}+3 i\right)^{3} & =\left(\frac{1}{3}\right)^{3}+(3 i)^{3}+3\left(\frac{1}{3}\right)(3 i)\left(\frac{1}{3}+3 i\right) \\
& =\frac{1}{27}+27 i^{3}+3 i\left(\frac{1}{3}+3 i\right) & \\
& =\frac{1}{27}+27(-i)+i+9 i^{2} & {\left[i^{3}=-i\right]} \\
& =\frac{1}{27}-27 i+i-9 & {\left[i^{2}=-1\right]} \\
& =\left(\frac{1}{27}-9\right)+i(-27+1) & \\
& =\frac{-242}{27}-26 i &
\end{array}
$$

EDUCATION CENTRE
 Where You Get Complete Knowledge

Question 10:

Express the given complex number in the form $a+i b:\left(-2-\frac{1}{3} i\right)^{3}$

$$
\begin{array}{rlr}
\left(-2-\frac{1}{3} i\right)^{3} & =(-1)^{3}\left(2+\frac{1}{3} i\right)^{3} & \\
& =-\left[2^{3}+\left(\frac{i}{3}\right)^{3}+3(2)\left(\frac{i}{3}\right)\left(2+\frac{i}{3}\right)\right] \\
& =-\left[8+\frac{i^{3}}{27}+2 i\left(2+\frac{i}{3}\right)\right] & \\
& =-\left[8-\frac{i}{27}+4 i+\frac{2 i^{2}}{3}\right] &
\end{array}
$$

Question 11:

Find the multiplicative inverse of the complex number 4-3i
Let $z=4-3 i$

Then, $\bar{z}=4+3 i$ and $|z|^{2}=4^{2}+(-3)^{2}=16+9=25$
Therefore, the multiplicative inverse of $4-3 i$ is given by

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{4+3 i}{25}=\frac{4}{25}+\frac{3}{25} i
$$

Question 12:

Find the multiplicative inverse of the complex number $\sqrt{5}+3 i$
Let $z=\sqrt{5}+3 i$

EDUCATION CENTRE
 Where You Get Complete Knowledge

Then, $\bar{z}=\sqrt{5}-3 i$ and $|z|^{2}=(\sqrt{5})^{2}+3^{2}=5+9=14$
Therefore, the multiplicative inverse of $\sqrt{5}+3 i$ is given by
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{\sqrt{5}-3 i}{14}=\frac{\sqrt{5}}{14}-\frac{3 i}{14}$

Question 13:

Find the multiplicative inverse of the complex number $-i$

Let $z=-i$
Then, $\bar{z}=i$ and $|z|^{2}=1^{2}=1$

Therefore, the multiplicative inverse of $-i$ is given by

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{i}{1}=i
$$

Question 14:

Express the following expression in the form of $a+i b$.
$\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$

$$
\begin{array}{ll}
& \frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})} \\
= & \frac{(3)^{2}-(i \sqrt{5})^{2}}{\sqrt{3}+\sqrt{2} i-\sqrt{3}+\sqrt{2} i} \\
= & \\
\frac{9-5 i^{2}}{2 \sqrt{2} i} & {\left[(a+b)(a-b)=a^{2}-b^{2}\right]} \\
=\frac{9-5(-1)}{2 \sqrt{2} i} & \\
= & \frac{9+5}{2 \sqrt{2} i} \times \frac{i}{i} \\
= & \frac{14 i}{2 \sqrt{2} i^{2}} \\
= & \frac{14}{2 \sqrt{2} i}(-1) \\
= & \frac{-7 i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
= & \frac{-7 \sqrt{2} i}{2}
\end{array}
$$

EXERCISE- 5.2

Question 1:

Find the modulus and the argument of the complex number $\mathrm{z}=-1-\mathrm{i} \sqrt{3}$

$$
z=-1-i \sqrt{3}
$$

Let $\mathrm{r} \cos \theta=-1$ and $\mathrm{r} \sin \theta=-\sqrt{3}$
On squaring and adding, we obtain

$$
(r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2}
$$

$$
\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3
$$

$\Rightarrow \mathrm{r}^{2}=4$ $\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2$
[Conventionally, $\mathrm{r}>0$]
\therefore Modulus $=2$
$\therefore 2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\Rightarrow \cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{-\sqrt{3}}{2}$

Since both the values of $\sin \theta$ and $\cos \theta$ are negative and $\sin \theta$ and $\cos \theta$ are negative in III quadrant,

Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$

Thus, the modulus and argument of the complex number $-1-\sqrt{3} \mathrm{i}$ are 2 and $\frac{-2 \pi}{3}$ respectively.

Question 2:

Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$
$z=-\sqrt{3}+i$

Let $r \cos \theta=-\sqrt{3}$ and $r \sin \theta=1$

On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-\sqrt{3})^{2}+1^{2}$
$\Rightarrow r^{2}=3+1=4$
$\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2$
[Conventionally, $r>0$]
\therefore Modulus $=2$
$\therefore 2 \cos \theta=-\sqrt{3}$ and $2 \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
$\therefore \theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
[As θ lies in the II quadrant]

Thus, the modulus and argument of the complex number $-\sqrt{3}+i$ are 2 and $\frac{5 \pi}{6}$ respectively.

Question 3:

Convert the given complex number in polar form: 1 - i
$1-i$
Let $r \cos \theta=1$ and $r \sin \theta=-1$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1^{2}+(-1)^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$\Rightarrow r^{2}=2$
$\Rightarrow r=\sqrt{2} \quad$ [Conventionally, $r>0$]
$\therefore \sqrt{2} \cos \theta=1$ and $\sqrt{2} \sin \theta=-1$
$\Rightarrow \cos \theta=\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$
$\therefore \theta=-\frac{\pi}{4} \quad$ [As θ lies in the IV quadrant]
$\therefore 1-i=r \cos \theta+i r \sin \theta=\sqrt{2} \cos \left(-\frac{\pi}{4}\right)+i \sqrt{2} \sin \left(-\frac{\pi}{4}\right)=\sqrt{2}\left[\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right]$
This is the required polar form.

Question 4:

Convert the given complex number in polar form: $-1+i$
$-1+i$
Let $r \cos \theta=-1$ and $r \sin \theta=1$
On squaring and adding, we obtain

Where You Get Complete Knowledge
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+1^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$\Rightarrow r^{2}=2$
$\Rightarrow r=\sqrt{2}$
[Conventionally, $r>0$]
$\therefore \sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\Rightarrow \cos \theta=-\frac{1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad$ [As θ lies in the II quadrant]
It can be written,

$$
\therefore-1+i=r \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
$$

This is the required polar form.

Question 5:

Convert the given complex number in polar form: $-1-i$
$-1-i$
Let $r \cos \theta=-1$ and $r \sin \theta=-1$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+(-1)^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$\Rightarrow r^{2}=2$
$\Rightarrow r=\sqrt{2} \quad$ [Conventionally, $r>0$]
$\therefore \sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=-1$
$\Rightarrow \cos \theta=-\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$
$\therefore \theta=-\left(\pi-\frac{\pi}{4}\right)=-\frac{3 \pi}{4} \quad$ [As θ lies in the III quadrant]

$$
\therefore-1-i=r \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{-3 \pi}{4}+i \sqrt{2} \sin \frac{-3 \pi}{4}=\sqrt{2}\left(\cos \frac{-3 \pi}{4}+i \sin \frac{-3 \pi}{4}\right)
$$ This is the required polar form.

Question 6:

Convert the given complex number in polar form: -3
-3
Let $r \cos \theta=-3$ and $r \sin \theta=0$
On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-3)^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=9$
$\Rightarrow r^{2}=9$
$\Rightarrow r=\sqrt{9}=3 \quad$ [Conventionally, $r>0$]
$\therefore 3 \cos \theta=-3$ and $3 \sin \theta=0$
$\Rightarrow \cos \theta=-1$ and $\sin \theta=0$
$\therefore \theta=\pi$
$\therefore-3=r \cos \theta+i r \sin \theta=3 \cos \pi+\hat{\mathcal{B}} \sin \pi=3(\cos \pi+i \sin \pi)$
This is the required polar form.

Question 7:

Convert the given complex number in polar form: $\sqrt{3}+i$
$\sqrt{3}+i$
Let $r \cos \theta=\sqrt{3}$ and $r \sin \theta=1$
On squaring and adding, we obtain

Where You Get Complete Knowledge
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(\sqrt{3})^{2}+1^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=3+1$
$\Rightarrow r^{2}=4$
$\Rightarrow r=\sqrt{4}=2 \quad$ [Conventionally, $r>0$]
$\therefore 2 \cos \theta=\sqrt{3}$ and $2 \sin \theta=1$
$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
$\therefore \theta=\frac{\pi}{6}$
[As θ lies in the I quadrant]
$\therefore \sqrt{3}+i=r \cos \theta+i r \sin \theta=2 \cos \frac{\pi}{6}+i 2 \sin \frac{\pi}{6}=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
This is the required polar form.

Question 8:

Convert the given complex number in polar form: i
i
Let $r \cos \theta=0$ and $r \sin \theta=1$

On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=0^{2}+1^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1$
$\Rightarrow r^{2}=1$
$\Rightarrow r=\sqrt{1}=1 \quad$ [Conventionally, $r>0$]
$\therefore \cos \theta=0$ and $\sin \theta=1$
$\therefore \theta=\frac{\pi}{2}$
$\therefore i=r \cos \theta+i r \sin \theta=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$

This is the required polar form.

EXERCISE- 5.3

Question 1:

Solve the equation $x^{2}+3=0$
The given quadratic equation is $x^{2}+3=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=1, b=0$, and $c=3$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=0^{2}-4 \times 1 \times 3=-12$
Therefore, the required solutions are

$$
\begin{aligned}
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a} & =\frac{ \pm \sqrt{-12}}{2 \times 1}=\frac{ \pm \sqrt{12} i}{2} \quad[\sqrt{-1}=i] \\
& =\frac{ \pm 2 \sqrt{3} i}{2}= \pm \sqrt{3} i
\end{aligned}
$$

Question 2:

Solve the equation $2 x^{2}+x+1=0$
The given quadratic equation is $2 x^{2}+x+1=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain $a=2, b=1$, and $c=1$

Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=1^{2}-4 \times 2 \times 1=1-8=-7$

Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \times 2}=\frac{-1 \pm \sqrt{7} i}{4}$

$$
[\sqrt{-1}=i]
$$

Question 3:

Solve the equation $x^{2}+3 x+9=0$
The given quadratic equation is $x^{2}+3 x+9=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=1, b=3$, and $c=9$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=3^{2}-4 \times 1 \times 9=9-36=-27$

Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-3 \pm \sqrt{-27}}{2(1)}=\frac{-3 \pm 3 \sqrt{-3}}{2}=\frac{-3 \pm 3 \sqrt{3} i}{2} \quad[\sqrt{-1}=i]$

Question 4:

Solve the equation $-x^{2}+x-2=0$
The given quadratic equation is $-x^{2}+x-2=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=-1, b=1$, and $c=-2$

Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=1^{2}-4 \times(-1) \times(-2)=1-8=-7$

Therefore, the required solutions are

$$
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \times(-1)}=\frac{-1 \pm \sqrt{7} i}{-2} \quad[\sqrt{-1}=i]
$$

Question 5:

Solve the equation $x^{2}+3 x+5=0$

The given quadratic equation is $x^{2}+3 x+5=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=1, b=3$, and $c=5$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=3^{2}-4 \times 1 \times 5=9-20=-11$
Therefore, the required solutions are

$$
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-3 \pm \sqrt{-11}}{2 \times 1}=\frac{-3 \pm \sqrt{11} i}{2} \quad[\sqrt{-1}=i]
$$

Question 6:

Solve the equation $x^{2}-x+2=0$

The given quadratic equation is $x^{2}-x+2=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain $a=1, b=-1$, and $c=2$

Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=(-1)^{2}-4 \times 1 \times 2=1-8=-7$
Therefore, the required solutions are

$$
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-1) \pm \sqrt{-7}}{2 \times 1}=\frac{1 \pm \sqrt{7} i}{2} \quad[\sqrt{-1}=i]
$$

Question 7:

Solve the equation $\sqrt{2} x^{2}+x+\sqrt{2}=0$
The given quadratic equation is $\sqrt{2} x^{2}+x+\sqrt{2}=0$

On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=\sqrt{2}, b=1$, and $c=\sqrt{2}$
Therefore, the discriminant of the given equation is
$D=b^{2}-4 a c=1^{2}-4 \times \sqrt{2} \times \sqrt{2}=1-8=-7$
Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}}=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}} \quad[\sqrt{-1}=i]$

Question 8:

Solve the equation $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$
The given quadratic equation is $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$
On comparing the given equation with $a x^{2}+b x+c=0$, we obtain
$a=\sqrt{3}, b=-\sqrt{2}$, and $c=3 \sqrt{3}$
Therefore, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=(-\sqrt{2})^{2}-4(\sqrt{3})(3 \sqrt{3})=2-36=-34$

Therefore, the required solutions are
$\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2 \times \sqrt{3}}=\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}} \quad[\sqrt{-1}=i]$

Question 9:

Solve the equation $x^{2}+x+\frac{1}{\sqrt{2}}=0$
The given quadratic equation is $\mathrm{x}^{2}+\mathrm{x}+\frac{1}{\sqrt{2}}=0$
This equation can also be written as $\sqrt{2} x^{2}+\sqrt{2} x+1=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain
$a=\sqrt{2}, b=\sqrt{2}$, and $c=1$
\therefore Discrimin ant $(D)=b^{2}-4 \mathrm{ac}=(\sqrt{2})^{2}-4 \times(\sqrt{2}) \times 1=2-4 \sqrt{2}$
Therefore, the required solutions are

$$
\begin{aligned}
\frac{-b \pm \sqrt{\mathrm{D}}}{2 \mathrm{a}} & =\frac{-\sqrt{2} \pm \sqrt{2-4 \sqrt{2}}}{2 \times \sqrt{2}}=\frac{-\sqrt{2} \pm \sqrt{2(1-2 \sqrt{2})}}{2 \sqrt{2}} \\
& =\left(\frac{-\sqrt{2} \pm \sqrt{2}(\sqrt{2 \sqrt{2}-1}) \mathrm{i}}{2 \sqrt{2}}\right) \quad[\sqrt{-1}=\mathrm{i}] \\
& =\frac{-1 \pm(\sqrt{2 \sqrt{2}-1}) \mathrm{i}}{2}
\end{aligned}
$$

Question 10:

Solve the equation $x^{2}+\frac{x}{\sqrt{2}}+1=0$

EDUCATION CENTRE
 Where You Get Complete Knowledge

The given quadratic equation is $x^{2}+\frac{x}{\sqrt{2}}+1=0$
This equation can also be written as $\sqrt{2} x^{2}+x+\sqrt{2}=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain
$a=\sqrt{2}, b=1$, and $c=\sqrt{2}$
\therefore Discriminant (D) $=b^{2}-4 a c=1^{2}-4 \times \sqrt{2} \times \sqrt{2}=1-8=-7$
Therefore, the required solutions are

$$
\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \sqrt{2}}=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}} \quad[\sqrt{-1}=i]
$$

