Where You Get Complete Knowledge

EXERCISE:- 11.1

Question 1:

Find the equation of the circle with centre $(0,2)$ and radius 2
The equation of a circle with centre (h, k) and radius r is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(0,2)$ and radius $(r)=2$.
Therefore, the equation of the circle is
$(x-0)^{2}+(y-2)^{2}=2^{2}$
$x^{2}+y^{2}+4-4 y=4$
$x^{2}+y^{2}-4 y=0$
Question 2:

Find the equation of the circle with centre $(-2,3)$ and radius 4
The equation of a circle with centre (h, k) and radius r is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(-2,3)$ and radius $(r)=4$.
Therefore, the equation of the circle is
$(x+2)^{2}+(y-3)^{2}=(4)^{2}$
$x^{2}+4 x+4+y^{2}-6 y+9=16$
$x^{2}+y^{2}+4 x-6 y-3=0$

Question 3:

EDUCATION CENTRE

Where You Get Complete Knowledge
Find the equation of the circle with centre $\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $\frac{1}{12}$
The equation of a circle with centre (h, k) and radius r is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=\left(\frac{1}{2}, \frac{1}{4}\right)$ and radius $(r)=\frac{1}{12}$.
Therefore, the equation of the circle is
$\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{4}\right)^{2}=\left(\frac{1}{12}\right)^{2}$
$x^{2}-x+\frac{1}{4}+y^{2}-\frac{y}{2}+\frac{1}{16}=\frac{1}{144}$
$x^{2}-x+\frac{1}{4}+y^{2}-\frac{y}{2}+\frac{1}{16}-\frac{1}{144}=0$
$144 x^{2}-144 x+36+144 y^{2}-72 y+9-1=0$
$144 x^{2}-144 x+144 y^{2}-72 y+44=0$
$36 x^{2}-36 x+36 y^{2}-18 y+11=0$
$36 x^{2}+36 y^{2}-36 x-18 y+11=0$

Question 4:

Find the equation of the circle with centre $(1,1)$ and radius $\sqrt{2}$

The equation of a circle with centre (h, k) and radius r is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(1,1)$ and radius $(r)=\sqrt{2}$.
Therefore, the equation of the circle is
$(x-1)^{2}+(y-1)^{2}=(\sqrt{2})^{2}$
$x^{2}-2 x+1+y^{2}-2 y+1=2$
$x^{2}+y^{2}-2 x-2 y=0$

Question 5:

Find the equation of the circle with centre $(-a,-b)$ and radius $\sqrt{a^{2}-b^{2}}$
The equation of a circle with centre (h, k) and radius r is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(-a,-b)$ and radius $(r)=\sqrt{a^{2}-b^{2}}$.
Therefore, the equation of the circle is
$(x+a)^{2}+(y+b)^{2}=\left(\sqrt{a^{2}-b^{2}}\right)^{2}$
$x^{2}+2 a x+a^{2}+y^{2}+2 b y+b^{2}=a^{2}-b^{2}$
$x^{2}+y^{2}+2 a x+2 b y+2 b^{2}=0$

Question 6:

Find the centre and radius of the circle $(x+5)^{2}+(y-3)^{2}=36$
The equation of the given circle is $(x+5)^{2}+(y-3)^{2}=36$.
$(x+5)^{2}+(y-3)^{2}=36$
$\Rightarrow\{x-(-5)\}^{2}+(y-3)^{2}=6^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $h=-5, k=$ 3 , and $r=6$.

Thus, the centre of the given circle is $(-5,3)$, while its radius is 6 .

Question 7:

Find the centre and radius of the circle $x^{2}+y^{2}-4 x-8 y-45=0$
The equation of the given circle is $x^{2}+y^{2}-4 x-8 y-45=0$.
$x^{2}+y^{2}-4 x-8 y-45=0$
$\Rightarrow\left(x^{2}-4 x\right)+\left(y^{2}-8 y\right)=45$
$\Rightarrow\left\{x^{2}-2(x)(2)+2^{2}\right\}+\left\{y^{2}-2(y)(4)+4^{2}\right\}-4-16=45$
$\Rightarrow(x-2)^{2}+(y-4)^{2}=65$
$\Rightarrow(x-2)^{2}+(y-4)^{2}=(\sqrt{65})^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $h=$ $2, k=4$, and $r=\sqrt{65}$.

Thus, the centre of the given circle is $(2,4)$, while its radius is $\sqrt{65}$.

Question 8:

Find the centre and radius of the circle $x^{2}+y^{2}-8 x+10 y-12=0$
The equation of the given circle is $x^{2}+y^{2}-8 x+10 y-12=0$.
$x^{2}+y^{2}-8 x+10 y-12=0$
$\Rightarrow\left(x^{2}-8 x\right)+\left(y^{2}+10 y\right)=12$
$\Rightarrow\left\{x^{2}-2(x)(4)+4^{2}\right\}+\left\{y^{2}+2(y)(5)+5^{2}\right\}-16-25=12$
$\Rightarrow(x-4)^{2}+(y+5)^{2}=53$
$\Rightarrow(x-4)^{2}+\{y-(-5)\}^{2}=(\sqrt{53})^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $h=$ $4, k=-5$, and $r=\sqrt{53}$.

Thus, the centre of the given circle is $(4,-5)$, while its radius is $\sqrt{53}$.

Question 9:

Find the centre and radius of the circle $2 x^{2}+2 y^{2}-x=0$
The equation of the given circle is $2 x^{2}+2 y^{2}-x=0$.
$2 x^{2}+2 y^{2}-x=0$
$\Rightarrow\left(2 x^{2}-x\right)+2 y^{2}=0$
$\Rightarrow 2\left[\left(x^{2}-\frac{x}{2}\right)+y^{2}\right]=0$
$\Rightarrow\left\{x^{2}-2 x\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)^{2}\right\}+y^{2}-\left(\frac{1}{4}\right)^{2}=0$
$\Rightarrow\left(x-\frac{1}{4}\right)^{2}+(y-0)^{2}=\left(\frac{1}{4}\right)^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $h=\frac{1}{4}, k=$
0 , and $r=\frac{1}{4}$.
Thus, the centre of the given circle is $\left(\frac{1}{4}, 0\right)$, while its radius is $\frac{1}{4}$.

Question 10:

Find the equation of the circle passing through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$.

Let the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Since the circle passes through points $(4,1)$ and $(6,5)$,
$(4-h)^{2}+(1-k)^{2}=r^{2}$.
$(6-h)^{2}+(5-k)^{2}=r^{2} \ldots$
Since the centre (h, k) of the circle lies on line $4 x+y=16$,
$4 h+k=16$
From equations (1) and (2), we obtain

$$
\begin{aligned}
& (4-h)^{2}+(1-k)^{2}=(6-h)^{2}+(5-k)^{2} \\
& \Rightarrow 16-8 h+h^{2}+1-2 k+k^{2}=36-12 h+h^{2}+25-10 k+k^{2} \\
& \Rightarrow 16-8 h+1-2 k=36-12 h+25-10 k
\end{aligned}
$$

$\Rightarrow 4 h+8 k=44$
$\Rightarrow h+2 k=11 \ldots$
On solving equations (3) and (4), we obtain $h=3$ and $k=4$.
On substituting the values of h and k in equation (1), we obtain
$(4-3)^{2}+(1-4)^{2}=r^{2}$
$\Rightarrow(1)^{2}+(-3)^{2}=r^{2}$
$\Rightarrow 1+9=r^{2}$
$\Rightarrow r^{2}=10$
$\Rightarrow r=\sqrt{10}$
Thus, the equation of the required circle is
$(x-3)^{2}+(y-4)^{2}=(\sqrt{10})^{2}$
$x^{2}-6 x+9+y^{2}-8 y+16=10$
$x^{2}+y^{2}-6 x-8 y+15=0$

Question 11:

Find the equation of the circle passing through the points $(2,3)$ and $(-1,1)$ and whose centre is on the line $x-3 y-11=0$.

Let the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Since the circle passes through points $(2,3)$ and $(-1,1)$,
$(2-h)^{2}+(3-k)^{2}=r^{2}$.
$(-1-h)^{2}+(1-k)^{2}=r^{2}$

Since the centre (h, k) of the circle lies on line $x-3 y-11=0$,
$h-3 k=11 \ldots$

From equations (1) and (2), we obtain
$(2-h)^{2}+(3-k)^{2}=(-1-h)^{2}+(1-k)^{2}$
$\Rightarrow 4-4 h+h^{2}+9-6 k+k^{2}=1+2 h+h^{2}+1-2 k+k^{2}$
$\Rightarrow 4-4 h+9-6 k=1+2 h+1-2 k$
$\Rightarrow 6 h+4 k=11 .$.

On solving equations (3) and (4), we obtain $h=\frac{7}{2}$ and $k=\frac{-5}{2}$.
On substituting the values of h and k in equation (1), we obtain

$$
\begin{aligned}
& \left(2-\frac{7}{2}\right)^{2}+\left(3+\frac{5}{2}\right)^{2}=r^{2} \\
& \Rightarrow\left(\frac{4-7}{2}\right)^{2}+\left(\frac{6+5}{2}\right)^{2}=r^{2} \\
& \Rightarrow\left(\frac{-3}{2}\right)^{2}+\left(\frac{11}{2}\right)^{2}=r^{2} \\
& \Rightarrow \frac{9}{4}+\frac{121}{4}=r^{2} \\
& \Rightarrow \frac{130}{4}=r^{2}
\end{aligned}
$$

Thus, the equation of the required circle is

$$
\begin{aligned}
& \left(x-\frac{7}{2}\right)^{2}+\left(y+\frac{5}{2}\right)^{2}=\frac{130}{4} \\
& \left(\frac{2 x-7}{2}\right)^{2}+\left(\frac{2 y+5}{2}\right)^{2}=\frac{130}{4} \\
& 4 x^{2}-28 x+49+4 y^{2}+20 y+25=130 \\
& 4 x^{2}+4 y^{2}-28 x+20 y-56=0 \\
& 4\left(x^{2}+y^{2}-7 x+5 y-14\right)=0 \\
& x^{2}+y^{2}-7 x+5 y-14=0
\end{aligned}
$$

Question 12:

Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point $(2,3)$.

Let the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Since the radius of the circle is 5 and its centre lies on the x-axis, $k=0$ and $r=5$.
Now, the equation of the circle becomes $(x-h)^{2}+y^{2}=25$.
It is given that the circle passes through point $(2,3)$.
$\therefore(2-h)^{2}+3^{2}=25$
$\Rightarrow(2-h)^{2}=25-9$
$\Rightarrow(2-h)^{2}=16$
$\Rightarrow 2-h= \pm \sqrt{16}= \pm 4$
If $2-h=4$, then $h=-2$.
If $2-h=-4$, then $h=6$.
When $h=-2$, the equation of the circle becomes
$(x+2)^{2}+y^{2}=25$
$x^{2}+4 x+4+y^{2}=25$
$x^{2}+y^{2}+4 x-21=0$
When $h=6$, the equation of the circle becomes

$$
\begin{aligned}
& (x-6)^{2}+y^{2}=25 \\
& x^{2}-12 x+36+y^{2}=25 \\
& x^{2}+y^{2}-12 x+11=0
\end{aligned}
$$

Question 13:

Find the equation of the circle passing through $(0,0)$ and making intercepts a and b on the coordinate axes.

Let the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Since the centre of the circle passes through $(0,0)$,
$(0-h)^{2}+(0-k)^{2}=r^{2}$
$\Rightarrow h^{2}+k^{2}=r^{2}$

The equation of the circle now becomes $(x-h)^{2}+(y-k)^{2}=h^{2}+k^{2}$.
It is given that the circle makes intercepts a and b on the coordinate axes. This means that the circle passes through points $(a, 0)$ and $(0, b)$. Therefore,
$(a-h)^{2}+(0-k)^{2}=h^{2}+k^{2}$.
$(0-h)^{2}+(b-k)^{2}=h^{2}+k^{2} .$.
From equation (1), we obtain
$a^{2}-2 \mathrm{a} h+h^{2}+k^{2}=h^{2}+k^{2}$
$\Rightarrow a^{2}-2 \mathrm{a} h=0$
$\Rightarrow a(a-2 h)=0$
$\Rightarrow a=0$ or $(a-2 h)=0$
However, $a \neq 0$; hence, $(a-2 h)=0 \Rightarrow h=\frac{a}{2}$.

EDUCATION CENTRE

Where You Get Complete Knowledge

From equation (2), we obtain
$h^{2}+b^{2}-2 b k+k^{2}=h^{2}+k^{2}$
$\Rightarrow b^{2}-2 b k=0$
$\Rightarrow b(b-2 k)=0$
$\Rightarrow b=0$ or $(b-2 k)=0$
However, $b \neq 0$; hence, $(b-2 k)=0 \Rightarrow k=\frac{b}{2}$.
Thus, the equation of the required circle is

$$
\begin{aligned}
& \left(x-\frac{a}{2}\right)^{2}+\left(y-\frac{b}{2}\right)^{2}=\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2} \\
& \Rightarrow\left(\frac{2 x-a}{2}\right)^{2}+\left(\frac{2 y-b}{2}\right)^{2}=\frac{a^{2}+b^{2}}{4} \\
& \Rightarrow 4 x^{2}-4 a x+a^{2}+4 y^{2}-4 b y+b^{2}=a^{2}+b^{2} \\
& \Rightarrow 4 x^{2}+4 y^{2}-4 a x-4 b y=0 \\
& \Rightarrow x^{2}+y^{2}-a x-b y=0
\end{aligned}
$$

Question 14:

Find the equation of a circle with centre $(2,2)$ and passes through the point $(4,5)$.
The centre of the circle is given as $(h, k)=(2,2)$.
Since the circle passes through point $(4,5)$, the radius (r) of the circle is the distance between the points $(2,2)$ and $(4,5)$.
$\therefore r=\sqrt{(2-4)^{2}+(2-5)^{2}}=\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{4+9}=\sqrt{13}$
Thus, the equation of the circle is

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-2)^{2}+(y-2)^{2}=(\sqrt{13})^{2} \\
& x^{2}-4 x+4+y^{2}-4 y+4=13 \\
& x^{2}+y^{2}-4 x-4 y-5=0
\end{aligned}
$$

Question 15:

Does the point $(-2.5,3.5)$ lie inside, outside or on the circle $x^{2}+y^{2}=25$?
The equation of the given circle is $x^{2}+y^{2}=25$.
$x^{2}+y^{2}=25$
$\Rightarrow(x-0)^{2}+(y-0)^{2}=5^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $h=0, k=0$, and $r=5$.
\therefore Centre $=(0,0)$ and radius $=5$

Distance between point $(-2.5,3.5)$ and centre $(0,0)$

$$
\begin{aligned}
& =\sqrt{(-2.5-0)^{2}+(3.5-0)^{2}} \\
& =\sqrt{6.25+12.25} \\
& =\sqrt{18.5} \\
& =4.3 \text { (approx. })<5
\end{aligned}
$$

Since the distance between point $(-2.5,3.5)$ and centre $(0,0)$ of the circle is less than the radius of the circle, point $(-2.5,3.5)$ lies inside the circle.

EXERCISE:- 11.2

Question 1:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^{2}=12 x$

The given equation is $y^{2}=12 x$.

Here, the coefficient of x is positive. Hence, the parabola opens towards the right.
On comparing this equation with $y^{2}=4 a x$, we obtain
$4 a=12 \Rightarrow a=3$
\therefore Coordinates of the focus $=(a, 0)=(3,0)$
Since the given equation involves y^{2}, the axis of the parabola is the x-axis.
Equation of direcctrix, $x=-a$ i.e., $x=-3$ i.e., $x+3=0$
Length of latus rectum $=4 a=4 \times 3=12$

Question 2:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^{2}=6 y$

The given equation is $x^{2}=6 y$.

Here, the coefficient of y is positive. Hence, the parabola opens upwards.
On comparing this equation with $x^{2}=4 a y$, we obtain
$4 a=6 \Rightarrow a=\frac{3}{2}$
\therefore Coordinates of the focus $=(0, a)=\left(0, \frac{3}{2}\right)$
Since the given equation involves x^{2}, the axis of the parabola is the y-axis.
Equation of directrix, $y=-a$ i.e., $y=-\frac{3}{2}$
Length of latus rectum $=4 a=6$

Question 3:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^{2}=-8 x$

The given equation is $y^{2}=-8 x$.
Here, the coefficient of x is negative. Hence, the parabola opens towards the left.
On comparing this equation with $y^{2}=-4 a x$, we obtain
$-4 a=-8 \Rightarrow a=2$
\therefore Coordinates of the focus $=(-a, 0)=(-2,0)$
Since the given equation involves y^{2}, the axis of the parabola is the x-axis.
Equation of directrix, $x=a$ i.e., $x=2$
Length of latus rectum $=4 a=8$

Question 4:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^{2}=-16 y$

The given equation is $x^{2}=-16 y$.
Here, the coefficient of y is negative. Hence, the parabola opens downwards.
On comparing this equation with $x^{2}=-4 a y$, we obtain
$-4 a=-16 \Rightarrow a=4$
\therefore Coordinates of the focus $=(0,-a)=(0,-4)$
Since the given equation involves x^{2}, the axis of the parabola is the y-axis.
Equation of directrix, $y=a$ i.e., $y=4$
Length of latus rectum $=4 a=16$

Question 5:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^{2}=10 x$

The given equation is $y^{2}=10 x$.
Here, the coefficient of x is positive. Hence, the parabola opens towards the right.
On comparing this equation with $y^{2}=4 a x$, we obtain

$$
4 a=10 \Rightarrow a=\frac{5}{2}
$$

\therefore Coordinates of the focus $=(a, 0)=\left(\frac{5}{2}, 0\right)$
Since the given equation involves y^{2}, the axis of the parabola is the x-axis.
Equation of directrix, $x=-a$, i.e., $x=-\frac{5}{2}$
Length of latus rectum $=4 a=10$

Question 6:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^{2}=-9 y$

The given equation is $x^{2}=-9 y$.
Here, the coefficient of y is negative. Hence, the parabola opens downwards.
On comparing this equation with $x^{2}=-4 a y$, we obtain

$$
-4 a=-9 \Rightarrow b=\frac{9}{4}
$$

\therefore Coordinates of the focus $=(0,-a)=\left(0,-\frac{9}{4}\right)$

Since the given equation involves x^{2}, the axis of the parabola is the y-axis.
Equation of directrix, $y=a$, i.e., $y=\frac{9}{4}$
Length of latus rectum $=4 a=9$

Question 7:

Find the equation of the parabola that satisfies the following conditions: Focus $(6,0)$; directrix $x=-6$

Focus (6, 0); directrix, $x=-6$
Since the focus lies on the x-axis, the x-axis is the axis of the parabola.

Therefore, the equation of the parabola is either of the form $y^{2}=4 a x$ or
$y^{2}=-4 a x$.
It is also seen that the directrix, $x=-6$ is to the left of the y-axis, while the focus $(6,0)$ is to the right of the y-axis. Hence, the parabola is of the form $y^{2}=4 a x$.

Here, $a=6$
Thus, the equation of the parabola is $y^{2}=24 x$.

Question 8:

Find the equation of the parabola that satisfies the following conditions: Focus $(0,-3)$; directrix $y=3$

Focus $=(0,-3) ;$ directrix $y=3$
Since the focus lies on the y-axis, the y-axis is the axis of the parabola.
Therefore, the equation of the parabola is either of the form $x^{2}=4 a y$ or $x^{2}=-4 a y$.

EDUCATION CENTRE

Where You Get Complete Knowledge

It is also seen that the directrix, $y=3$ is above the x-axis, while the focus
$(0,-3)$ is below the x-axis. Hence, the parabola is of the form $x^{2}=-4 a y$.
Here, $a=3$

Thus, the equation of the parabola is $x^{2}=-12 y$.

Question 9:

Find the equation of the parabola that satisfies the following conditions: Vertex $(0,0)$; focus (3,0)

Vertex $(0,0)$; focus $(3,0)$
Since the vertex of the parabola is $(0,0)$ and the focus lies on the positive x-axis, x-axis is the axis of the parabola, while the equation of the parabola is of the form $y^{2}=4 a x$.

Since the focus is $(3,0), a=3$.
Thus, the equation of the parabola is $y^{2}=4 \times 3 \times x$, i.e., $y^{2}=12 x$

Question 10:

Find the equation of the parabola that satisfies the following conditions: Vertex $(0,0)$ focus $(-2,0)$

Vertex $(0,0)$ focus $(-2,0)$

Since the vertex of the parabola is $(0,0)$ and the focus lies on the negative x-axis, x-axis is the axis of the parabola, while the equation of the parabola is of the form $y^{2}=-4 a x$.

Since the focus is $(-2,0), a=2$.
Thus, the equation of the parabola is $y^{2}=-4(2) x$, i.e., $y^{2}=-8 x$

Question 11:

Find the equation of the parabola that satisfies the following conditions: Vertex $(0,0)$ passing through $(2,3)$ and axis is along x-axis

Since the vertex is $(0,0)$ and the axis of the parabola is the x-axis, the equation of the parabola is either of the form $y^{2}=4 a x$ or $y^{2}=-4 a x$.

The parabola passes through point $(2,3)$, which lies in the first quadrant.
Therefore, the equation of the parabola is of the form $y^{2}=4 a x$, while point
$(2,3)$ must satisfy the equation $y^{2}=4 a x$.
$\therefore 3^{2}=4 a(2) \Rightarrow a=\frac{9}{8}$
Thus, the equation of the parabola is
$y^{2}=4\left(\frac{9}{8}\right) x$
$y^{2}=\frac{9}{2} x$
$2 y^{2}=9 x$

Question 12:

Find the equation of the parabola that satisfies the following conditions: Vertex $(0,0)$, passing through $(5,2)$ and symmetric with respect to y-axis

Since the vertex is $(0,0)$ and the parabola is symmetric about the y-axis, the equation of the parabola is either of the form $x^{2}=4 a y$ or $x^{2}=-4 a y$.

The parabola passes through point $(5,2)$, which lies in the first quadrant.
Therefore, the equation of the parabola is of the form $x^{2}=4 a y$, while point
$(5,2)$ must satisfy the equation $x^{2}=4 a y$.
$\therefore(5)^{2}=4 \times a \times 2 \Rightarrow 25=8 a \Rightarrow a=\frac{25}{8}$
Thus, the equation of the parabola is

EXERCISE:- 11.3

Question 1:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

The given equation is $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$.
Here, the denominator of $\frac{x^{2}}{36}$ is greater than the denominator of $\frac{y^{2}}{16}$.
Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we obtain $a=6$ and $b=4$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-16}=\sqrt{20}=2 \sqrt{5}$

Therefore,
The coordinates of the foci are $(2 \sqrt{5}, 0)$ and $(-2 \sqrt{5}, 0)$.
The coordinates of the vertices are $(6,0)$ and $(-6,0)$.
Length of major axis $=2 a=12$
Length of minor axis $=2 b=8$
Eccentricity, $e=\frac{c}{a}=\frac{2 \sqrt{5}}{6}=\frac{\sqrt{5}}{3}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 16}{6}=\frac{16}{3}$

Question 2:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

The given equation is $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ or $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{5^{2}}=1$.
Here, the denominator of $\frac{y^{2}}{25}$ is greater than the denominator of $\frac{x^{2}}{4}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=2$ and $a=5$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{25-4}=\sqrt{21}$

Therefore,
The coordinates of the foci are $(0, \sqrt{21})$ and $(0,-\sqrt{21})$.
The coordinates of the vertices are $(0,5)$ and $(0,-5)$
Length of major axis $=2 a=10$
Length of minor axis $=2 b=4$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{21}}{5}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{5}=\frac{8}{5}$

Question 3:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

The given equation is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}=1$.
Here, the denominator of $\frac{x^{2}}{16}$ is greater than the denominator of $\frac{y^{2}}{9}$.
Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we obtain $a=4$ and $b=3$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-9}=\sqrt{7}$
Therefore,
The coordinates of the foci are $(\pm \sqrt{7}, 0)$.
The coordinates of the vertices are $(\pm 4,0)$.
Length of major axis $=2 a=8$
Length of minor axis $=2 b=6$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{7}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2}$
Question 4:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

The given equation is $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$ or $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{10^{2}}=1$.
Here, the denominator of $\frac{y^{2}}{100}$ is greater than the denominator of $\frac{x^{2}}{25}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=5$ and $a=10$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{100-25}=\sqrt{75}=5 \sqrt{3}$
Therefore,
The coordinates of the foci are $(0, \pm 5 \sqrt{3})$.
The coordinates of the vertices are $(0, \pm 10)$.
Length of major axis $=2 a=20$
Length of minor axis $=2 b=10$
Eccentricity, $e=\frac{c}{a}=\frac{5 \sqrt{3}}{10}=\frac{\sqrt{3}}{2}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 25}{10}=5$

Question 5:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

The given equation is $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$ or $\frac{x^{2}}{7^{2}}+\frac{y^{2}}{6^{2}}=1$.
Here, the denominator of $\frac{x^{2}}{49}$ is greater than the denominator of $\frac{y^{2}}{36}$.
Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we obtain $a=7$ and $b=6$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{49-36}=\sqrt{13}$

Therefore,
The coordinates of the foci are $(\pm \sqrt{13}, 0)$.
The coordinates of the vertices are $(\pm 7,0)$.
Length of major axis $=2 a=14$
Length of minor axis $=2 b=12$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{13}}{7}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 36}{7}=\frac{72}{7}$

Question 6:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$

The given equation is $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$ or $\frac{x^{2}}{10^{2}}+\frac{y^{2}}{20^{2}}=1$.
Here, the denominator of $\frac{y^{2}}{400}$ is greater than the denominator of $\frac{x^{2}}{100}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=10$ and $a=20$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{400-100}=\sqrt{300}=10 \sqrt{3}$
Therefore,
The coordinates of the foci are $(0, \pm 10 \sqrt{3})$.
The coordinates of the vertices are $(0, \pm 20)$
Length of major axis $=2 a=40$
Length of minor axis $=2 b=20$
Eccentricity, $e=\frac{c}{a}=\frac{10 \sqrt{3}}{20}=\frac{\sqrt{3}}{2}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 100}{20}=10$

Question 7:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36 x^{2}+4 y^{2}=144$

The given equation is $36 x^{2}+4 y^{2}=144$.

It can be written as
$36 x^{2}+4 y^{2}=144$
Or, $\frac{x^{2}}{4}+\frac{y^{2}}{36}=1$
Or, $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{6^{2}}=1$
Here, the denominator of $\frac{y^{2}}{6^{2}}$ is greater than the denominator of $\frac{x^{2}}{2^{2}}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing equation (1) with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=2$ and $a=6$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-4}=\sqrt{32}=4 \sqrt{2}$

Therefore,
The coordinates of the foci are $(0, \pm 4 \sqrt{2})$.

The coordinates of the vertices are $(0, \pm 6)$.
Length of major axis $=2 a=12$
Length of minor axis $=2 b=4$
Eccentricity, $e=\frac{c}{a}=\frac{4 \sqrt{2}}{6}=\frac{2 \sqrt{2}}{3}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{6}=\frac{4}{3}$
Question 8:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16 x^{2}+y^{2}=16$

The given equation is $16 x^{2}+y^{2}=16$.
It can be written as
$16 x^{2}+y^{2}=16$
Or, $\frac{x^{2}}{1}+\frac{y^{2}}{16}=1$
Or, $\frac{x^{2}}{1^{2}}+\frac{y^{2}}{4^{2}}=1$
Here, the denominator of $\frac{y^{2}}{4^{2}}$ is greater than the denominator of $\frac{x^{2}}{1^{2}}$.
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing equation (1) with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, we obtain $b=1$ and $a=4$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-1}=\sqrt{15}$

Therefore,
The coordinates of the foci are $(0, \pm \sqrt{15})$.

The coordinates of the vertices are $(0, \pm 4)$.
Length of major axis $=2 a=8$
Length of minor axis $=2 b=2$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{15}}{4}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 1}{4}=\frac{1}{2}$

Question 9:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 x^{2}+9 y^{2}=36$

The given equation is $4 x^{2}+9 y^{2}=36$.
It can be written as
$4 x^{2}+9 y^{2}=36$
Or, $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
Or, $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$
Here, the denominator of $\frac{x^{2}}{3^{2}}$ is greater than the denominator of $\frac{y^{2}}{2^{2}}$.
Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we obtain $a=3$ and $b=2$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{9-4}=\sqrt{5}$
Therefore,
The coordinates of the foci are $(\pm \sqrt{5}, 0)$.
The coordinates of the vertices are $(\pm 3,0)$.
Length of major axis $=2 a=6$
Length of minor axis $=2 b=4$

Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{5}}{3}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{3}=\frac{8}{3}$

Question 10:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 5,0)$, foci $(\pm 4,0)$

Vertices $(\pm 5,0)$, foci $(\pm 4,0)$
Here, the vertices are on the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semimajor axis.

Accordingly, $a=5$ and $c=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 5^{2}=b^{2}+4^{2}$
$\Rightarrow 25=b^{2}+16$
$\Rightarrow b^{2}=25-16$
$\Rightarrow b=\sqrt{9}=3$
Thus, the equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.

Question 11:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(0, \pm 13)$, foci $(0, \pm 5)$

Vertices $(0, \pm 13)$, foci $(0, \pm 5)$

Here, the vertices are on the y-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, where a is the semimajor axis.

Accordingly, $a=13$ and $c=5$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 13^{2}=b^{2}+5^{2}$
$\Rightarrow 169=b^{2}+25$
$\Rightarrow b^{2}=169-25$
$\Rightarrow b=\sqrt{144}=12$
Thus, the equation of the ellipse is $\frac{x^{2}}{12^{2}}+\frac{y^{2}}{13^{2}}=1$ or $\frac{x^{2}}{144}+\frac{y^{2}}{169}=1$.

Question 12:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6,0)$, foci $(\pm 4,0)$

Vertices $(\pm 6,0)$, foci $(\pm 4,0)$
Here, the vertices are on the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semimajor axis.

Accordingly, $a=6, c=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 6^{2}=b^{2}+4^{2}$
$\Rightarrow 36=b^{2}+16$
$\Rightarrow b^{2}=36-16$
$\Rightarrow b=\sqrt{20}$

Thus, the equation of the ellipse is

$$
\frac{x^{2}}{6^{2}}+\frac{y^{2}}{(\sqrt{20})^{2}}=1 \text { or } \frac{x^{2}}{36}+\frac{y^{2}}{20}=1
$$

Question 13:

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$

Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$
Here, the major axis is along the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semimajor axis.

Accordingly, $a=3$ and $b=2$.
Thus, the equation of the ellipse is $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$ i.e., $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.

Question 14:

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1,0)$

Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1,0)$
Here, the major axis is along the y-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, where a is the semimajor axis.

Accordingly, $a=\sqrt{5}$ and $b=1$.

Thus, the equation of the ellipse is

$$
\frac{x^{2}}{1^{2}}+\frac{y^{2}}{(\sqrt{5})^{2}}=1 \text { or } \frac{x^{2}}{1}+\frac{y^{2}}{5}=1 .
$$

Question 15:

Find the equation for the ellipse that satisfies the given conditions: Length of major axis 26 , foci $(\pm 5,0)$

Length of major axis $=26$; foci $=(\pm 5,0)$.
Since the foci are on the x-axis, the major axis is along the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semimajor axis.

Accordingly, $2 a=26 \Rightarrow a=13$ and $c=5$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 13^{2}=b^{2}+5^{2}$
$\Rightarrow 169=b^{2}+25$
$\Rightarrow b^{2}=169-25$
$\Rightarrow b=\sqrt{144}=12$
Thus, the equation of the ellipse is $\frac{x^{2}}{13^{2}}+\frac{y^{2}}{12^{2}}=1$ or $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$.

Question 16:

Find the equation for the ellipse that satisfies the given conditions: Length of minor axis 16 , foci $(0, \pm 6)$

Length of minor axis $=16$; foci $=(0, \pm 6)$.

Since the foci are on the y-axis, the major axis is along the y-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, where a is the semimajor axis.

Accordingly, $2 b=16 \Rightarrow b=8$ and $c=6$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore a^{2}=8^{2}+6^{2}=64+36=100$
$\Rightarrow a=\sqrt{100}=10$
Thus, the equation of the ellipse is $\frac{x^{2}}{8^{2}}+\frac{y^{2}}{10^{2}}=1$ or $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$.

Question 17:

Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3,0), a=4$
Foci $(\pm 3,0), a=4$
Since the foci are on the x-axis, the major axis is along the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semimajor axis.

Accordingly, $c=3$ and $a=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 4^{2}=b^{2}+3^{2}$
$\Rightarrow 16=b^{2}+9$
$\Rightarrow b^{2}=16-9=7$
Thus, the equation of the ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$.

Question 18:

Find the equation for the ellipse that satisfies the given conditions: $b=3, c=4$, centre at the origin; foci on the x axis.

It is given that $b=3, c=4$, centre at the origin; foci on the x axis.
Since the foci are on the x-axis, the major axis is along the x-axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is the semimajor axis.

Accordingly, $b=3, c=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore a^{2}=3^{2}+4^{2}=9+16=25$
$\Rightarrow a=5$
Thus, the equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.

Question 19:

Find the equation for the ellipse that satisfies the given conditions: Centre at $(0,0)$, major axis on the y-axis and passes through the points $(3,2)$ and $(1,6)$.

Since the centre is at $(0,0)$ and the major axis is on the y-axis, the equation of the ellipse will be of the form
$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$
Where, a is the semi-major axis
The ellipse passes through points $(3,2)$ and $(1,6)$. Hence,
$\frac{1}{b^{2}}+\frac{36}{a^{2}}=1$
On solving equations (2) and (3), we obtain $b^{2}=10$ and $a^{2}=40$.
Thus, the equation of the ellipse is $\frac{x^{2}}{10}+\frac{y^{2}}{40}=1$ or $4 x^{2}+y^{2}=40$.

Question 20:

Find the equation for the ellipse that satisfies the given conditions: Major axis on the x axis and passes through the points $(4,3)$ and $(6,2)$.

Since the major axis is on the x-axis, the equation of the ellipse will be of the form
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Where, a is the semi-major axis
The ellipse passes through points $(4,3)$ and $(6,2)$. Hence,
$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$
$\frac{36}{a^{2}}+\frac{4}{b^{2}}=1$
On solving equations (2) and (3), we obtain $a^{2}=52$ and $b^{2}=13$.
Thus, the equation of the ellipse is $\frac{x^{2}}{52}+\frac{y^{2}}{13}=1$ or $x^{2}+4 y^{2}=52$.

EXERCISE:- 11.4

Question 1:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

The given equation is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}-\frac{y^{2}}{3^{2}}=1$.
On comparing this equation with the standard equation of hyperbola i.e., $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, we obtain $a=4$ and $b=3$.

We know that $a^{2}+b^{2}=c^{2}$.

$$
\begin{aligned}
& \therefore c^{2}=4^{2}+3^{2}=25 \\
& \Rightarrow c=5
\end{aligned}
$$

Therefore,

The coordinates of the foci are $(\pm 5,0)$.

The coordinates of the vertices are $(\pm 4,0)$.
Eccentricity, $e=\frac{c}{a}=\frac{5}{4}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2}$

Question 2:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$

The given equation is

$$
\frac{y^{2}}{9}-\frac{x^{2}}{27}=1 \text { or } \frac{y^{2}}{3^{2}}-\frac{x^{2}}{(\sqrt{27})^{2}}=1
$$

On comparing this equation with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we obtain $a=3$ and $b=\sqrt{27}$.

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=3^{2}+(\sqrt{27})^{2}=9+27=36$
$\Rightarrow c=6$

Therefore,

The coordinates of the foci are $(0, \pm 6)$.

The coordinates of the vertices are $(0, \pm 3)$.
Eccentricity, $e=\frac{c}{a}=\frac{6}{3}=2$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 27}{3}=18$

Question 3:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $9 y^{2}-4 x^{2}=36$

The given equation is $9 y^{2}-4 x^{2}=36$.
It can be written as
$9 y^{2}-4 x^{2}=36$

Or, $\frac{y^{2}}{4}-\frac{x^{2}}{9}=1$
Or, $\frac{y^{2}}{2^{2}}-\frac{x^{2}}{3^{2}}=1$
On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we obtain $a=2$ and $b=3$.

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=4+9=13$
$\Rightarrow c=\sqrt{13}$
Therefore,
The coordinates of the foci are $(0, \pm \sqrt{13})$.
The coordinates of the vertices are $(0, \pm 2)$.
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{13}}{2}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{2}=9$

Question 4:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=576$

The given equation is $16 x^{2}-9 y^{2}=576$.
It can be written as
$16 x^{2}-9 y^{2}=576$
$\Rightarrow \frac{x^{2}}{36}-\frac{y^{2}}{64}=1$
$\Rightarrow \frac{x^{2}}{6^{2}}-\frac{y^{2}}{8^{2}}=1$
On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, we obtain $a=6$ and $b=8$.

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=36+64=100$
$\Rightarrow c=10$

Where You Get Complete Knowledge

Therefore,

The coordinates of the foci are $(\pm 10,0)$.

The coordinates of the vertices are $(\pm 6,0)$.
Eccentricity, $e=\frac{c}{a}=\frac{10}{6}=\frac{5}{3}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 64}{6}=\frac{64}{3}$

Question 5:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $5 y^{2}-9 x^{2}=36$

The given equation is $5 y^{2}-9 x^{2}=36$.

$$
\begin{align*}
& \Rightarrow \frac{y^{2}}{\left(\frac{36}{5}\right)}-\frac{x^{2}}{4}=1 \\
& \Rightarrow \frac{y^{2}}{\left(\frac{6}{\sqrt{5}}\right)^{2}}-\frac{x^{2}}{2^{2}}=1 \tag{1}
\end{align*}
$$

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we obtain $a=\frac{6}{\sqrt{5}}$ and $b=2$.

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=\frac{36}{5}+4=\frac{56}{5}$
$\Rightarrow c=\sqrt{\frac{56}{5}}=\frac{2 \sqrt{14}}{\sqrt{5}}$

EDUCATION CENTRE

Where You Get Complete Knowledge
Therefore, the coordinates of the foci are $\left(0, \pm \frac{2 \sqrt{14}}{\sqrt{5}}\right)$.
The coordinates of the vertices are $\left(0, \pm \frac{6}{\sqrt{5}}\right)$.
Eccentricity, $e=\frac{c}{a}=\frac{\left(\frac{2 \sqrt{14}}{\sqrt{5}}\right)}{\left(\frac{6}{\sqrt{5}}\right)}=\frac{\sqrt{14}}{3}$

Length of latus rectum

$$
=\frac{2 b^{2}}{a}=\frac{2 \times 4}{\left(\frac{6}{\sqrt{5}}\right)}=\frac{4 \sqrt{5}}{3}
$$

Question 6:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $49 y^{2}-16 x^{2}=784$

The given equation is $49 y^{2}-16 x^{2}=784$.
It can be written as
$49 y^{2}-16 x^{2}=784$
Or, $\frac{y^{2}}{16}-\frac{x^{2}}{49}=1$
Or, $\frac{y^{2}}{4^{2}}-\frac{x^{2}}{7^{2}}=1$
On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we obtain $a=4$ and $b=7$.

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=16+49=65$
$\Rightarrow c=\sqrt{65}$

Where You Get Complete Knowledge

Therefore,
The coordinates of the foci are $(0, \pm \sqrt{65})$.
The coordinates of the vertices are $(0, \pm 4)$.
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{65}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 49}{4}=\frac{49}{2}$

Question 7:

Find the equation of the hyperbola satisfying the give conditions: Vertices $(\pm 2,0)$, foci $(\pm 3,0)$

Vertices $(\pm 2,0)$, foci $(\pm 3,0)$
Here, the vertices are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Since the vertices are $(\pm 2,0), a=2$.
Since the foci are $(\pm 3,0), c=3$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 2^{2}+b^{2}=3^{2}$
$b^{2}=9-4=5$
Thus, the equation of the hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$.
Question 8:

Find the equation of the hyperbola satisfying the give conditions: Vertices $(0, \pm 5)$, foci $(0, \pm 8)$

Vertices $(0, \pm 5)$, foci $(0, \pm 8)$
Here, the vertices are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
Since the vertices are $(0, \pm 5), a=5$.
Since the foci are $(0, \pm 8), c=8$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 5^{2}+b^{2}=8^{2}$
$b^{2}=64-25=39$
Thus, the equation of the hyperbola is $\frac{y^{2}}{25}-\frac{x^{2}}{39}=1$.

Question 9:

Find the equation of the hyperbola satisfying the give conditions: Vertices ($0, \pm 3$), foci $(0, \pm 5)$

Vertices $(0, \pm 3)$, foci $(0, \pm 5)$
Here, the vertices are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
Since the vertices are $(0, \pm 3), a=3$.
Since the foci are $(0, \pm 5), c=5$.
We know that $a^{2}+b^{2}=c^{2}$.

$$
\begin{aligned}
& \therefore 3^{2}+b^{2}=5^{2} \\
& \Rightarrow b^{2}=25-9=16
\end{aligned}
$$

Thus, the equation of the hyperbola is $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$.

Question 10:

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 5,0)$, the transverse axis is of length 8 .

Foci $(\pm 5,0)$, the transverse axis is of length 8 .
Here, the foci are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Since the foci are $(\pm 5,0), c=5$.

Since the length of the transverse axis is $8,2 a=8 \Rightarrow a=4$.

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 4^{2}+b^{2}=5^{2}$
$\Rightarrow b^{2}=25-16=9$
Thus, the equation of the hyperbola is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.

Question 11:

Find the equation of the hyperbola satisfying the give conditions: Foci $(0, \pm 13)$, the conjugate axis is of length 24 .

Foci $(0, \pm 13)$, the conjugate axis is of length 24 .

Here, the foci are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
Since the foci are $(0, \pm 13), c=13$.
Since the length of the conjugate axis is $24,2 b=24 \Rightarrow b=12$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+12^{2}=13^{2}$
$\Rightarrow a^{2}=169-144=25$
Thus, the equation of the hyperbola is $\frac{y^{2}}{25}-\frac{x^{2}}{144}=1$.

Question 12:

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8 .

Foci $(\pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8 .
Here, the foci are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Since the foci are $(\pm 3 \sqrt{5}, 0), c= \pm 3 \sqrt{5}$.
Length of latus rectum $=8$

$$
\Rightarrow \frac{2 b^{2}}{a}=8
$$

$\Rightarrow b^{2}=4 a$

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+4 a=45$
$\Rightarrow a^{2}+4 a-45=0$
$\Rightarrow a^{2}+9 a-5 a-45=0$
$\Rightarrow(a+9)(a-5)=0$
$\Rightarrow a=-9,5$

Since a is non-negative, $a=5$.
$\therefore b^{2}=4 a=4 \times 5=20$

Thus, the equation of the hyperbola is $\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$.

Question 13:

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 4,0)$, the latus rectum is of length 12

Foci $(\pm 4,0)$, the latus rectum is of length 12 .

Here, the foci are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Since the foci are $(\pm 4,0), c=4$.
Length of latus rectum $=12$
$\Rightarrow \frac{2 b^{2}}{a}=12$
$\Rightarrow b^{2}=6 a$

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+6 a=16$
$\Rightarrow a^{2}+6 a-16=0$
$\Rightarrow a^{2}+8 a-2 a-16=0$
$\Rightarrow(a+8)(a-2)=0$
$\Rightarrow a=-8,2$
Since a is non-negative, $a=2$.
$\therefore b^{2}=6 a=6 \times 2=12$

Thus, the equation of the hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$.

Question 14:

Find the equation of the hyperbola satisfying the give conditions: Vertices $(\pm 7,0), \quad e=\frac{4}{3}$
Vertices $(\pm 7,0), \quad e=\frac{4}{3}$
Here, the vertices are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Since the vertices are $(\pm 7,0), a=7$.
It is given that $e=\frac{4}{3}$

EDUCATION CENTRE

Where You Get Complete Knowledge
$\therefore \frac{c}{a}=\frac{4}{3} \quad\left[e=\frac{c}{a}\right]$
$\Rightarrow \frac{c}{7}=\frac{4}{3}$
$\Rightarrow c=\frac{28}{3}$

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 7^{2}+b^{2}=\left(\frac{28}{3}\right)^{2}$
$\Rightarrow b^{2}=\frac{784}{9}-49$
$\Rightarrow b^{2}=\frac{784-441}{9}=\frac{343}{9}$
Thus, the equation of the hyperbola is $\frac{x^{2}}{49}-\frac{9 y^{2}}{343}=1$.

Question 15:

Find the equation of the hyperbola satisfying the give conditions: Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$

Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$
Here, the foci are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
Since the foci are $(0, \pm \sqrt{10}), c=\sqrt{10}$.

We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+b^{2}=10$
$\Rightarrow b^{2}=10-a^{2} \ldots$

Since the hyperbola passes through point $(2,3)$,

$$
\begin{equation*}
\frac{9}{a^{2}}-\frac{4}{b^{2}}=1 \tag{2}
\end{equation*}
$$

From equations (1) and (2), we obtain

$$
\begin{aligned}
& \frac{9}{a^{2}}-\frac{4}{\left(10-a^{2}\right)}=1 \\
& \Rightarrow 9\left(10-a^{2}\right)-4 a^{2}=a^{2}\left(10-a^{2}\right) \\
& \Rightarrow 90-9 a^{2}-4 a^{2}=10 a^{2}-a^{4} \\
& \Rightarrow a^{4}-23 a^{2}+90=0 \\
& \Rightarrow a^{4}-18 a^{2}-5 a^{2}+90=0 \\
& \Rightarrow a^{2}\left(a^{2}-18\right)-5\left(a^{2}-18\right)=0 \\
& \Rightarrow\left(a^{2}-18\right)\left(a^{2}-5\right)=0 \\
& \Rightarrow a^{2}=18 \text { or } 5
\end{aligned}
$$

In hyperbola, $c>a$, i.e., $c^{2}>a^{2}$
$\therefore a^{2}=5$
$\Rightarrow b^{2}=10-a^{2}=10-5=5$
Thus, the equation of the hyperbola is $\frac{y^{2}}{5}-\frac{x^{2}}{5}=1$.

