EDUCATION CENTRE
 Where You Get Complete Knowledge

EXERCISE:-12.1

Question 1:

A point is on the x-axis. What are its y-coordinates and z-coordinates?
If a point is on the x-axis, then its y-coordinates and z-coordinates are zero.

Question 2:

A point is in the XZ-plane. What can you say about its y-coordinate?
If a point is in the XZ plane, then its y-coordinate is zero.

Question 3:

Name the octants in which the following points lie:
$(1,2,3),(4,-2,3),(4,-2,-5),(4,2,-5),(-4,2,-5),(-4,2,5)$,
$(-3,-1,6),(2,-4,-7)$

The x-coordinate, y-coordinate, and z-coordinate of point $(1,2,3)$ are all positive. Therefore, this point lies in octant \mathbf{I}.

The x-coordinate, y-coordinate, and z-coordinate of point $(4,-2,3)$ are positive, negative, and positive respectively. Therefore, this point lies in octant IV.

The x-coordinate, y-coordinate, and z-coordinate of point $(4,-2,-5)$ are positive, negative, and negative respectively. Therefore, this point lies in octant VIII.

The x-coordinate, y-coordinate, and z-coordinate of point $(4,2,-5)$ are positive, positive, and negative respectively. Therefore, this point lies in octant \mathbf{V}.

The x-coordinate, y-coordinate, and z-coordinate of point $(-4,2,-5)$ are negative, positive, and negative respectively. Therefore, this point lies in octant VI.

The x-coordinate, y-coordinate, and z-coordinate of point $(-4,2,5)$ are negative, positive, and positive respectively. Therefore, this point lies in octant II.

The x-coordinate, y-coordinate, and z-coordinate of point $(-3,-1,6)$ are negative, negative, and positive respectively. Therefore, this point lies in octant III.

The x-coordinate, y-coordinate, and z-coordinate of point $(2,-4,-7)$ are positive, negative, and negative respectively. Therefore, this point lies in octant VIII.

Question 4:

Fill in the blanks:
(i) The x-axis and y-axis taken together determine a plane known as $\underline{X Y \text {-plane }}$.
(ii) The coordinates of points in the XY-plane are of the form $\underline{(x, y, 0)}$.
(iii) Coordinate planes divide the space into eight octants.

EXERCISE:-12.2

Question 1:

Find the distance between the following pairs of points:
(i) $(2,3,5)$ and $(4,3,1)$ (ii) $(-3,7,2)$ and $(2,4,-1)$
(iii) $(-1,3,-4)$ and $(1,-3,4)$ (iv) $(2,-1,3)$ and $(-2,1,3)$

The distance between points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{P}\left(x_{2}, y_{2}, z_{2}\right)$ is given
by $\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
(i) Distance between points $(2,3,5)$ and $(4,3,1)$

Where You Get Complete Knowledge
$=\sqrt{(4-2)^{2}+(3-3)^{2}+(1-5)^{2}}$
$=\sqrt{(2)^{2}+(0)^{2}+(-4)^{2}}$
$=\sqrt{4+16}$
$=\sqrt{20}$
$=2 \sqrt{5}$
(ii) Distance between points $(-3,7,2)$ and $(2,4,-1)$
$=\sqrt{(2+3)^{2}+(4-7)^{2}+(-1-2)^{2}}$
$=\sqrt{(5)^{2}+(-3)^{2}+(-3)^{2}}$
$=\sqrt{25+9+9}$
$=\sqrt{43}$
(iii) Distance between points $(-1,3,-4)$ and $(1,-3,4)$

$$
\begin{aligned}
& =\sqrt{(1+1)^{2}+(-3-3)^{2}+(4+4)^{2}} \\
& =\sqrt{(2)^{2}+(-6)^{3}+(8)^{2}} \\
& =\sqrt{4+36+64}=\sqrt{104}=2 \sqrt{26}
\end{aligned}
$$

(iv) Distance between points $(2,-1,3)$ and $(-2,1,3)$

$$
\begin{aligned}
& =\sqrt{(-2-2)^{2}+(1+1)^{2}+(3-3)^{2}} \\
& =\sqrt{(-4)^{2}+(2)^{2}+(0)^{2}} \\
& =\sqrt{16+4} \\
& =\sqrt{20} \\
& =2 \sqrt{5}
\end{aligned}
$$

Question 2:

Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.
Let points $(-2,3,5),(1,2,3)$, and $(7,0,-1)$ be denoted by P, Q, and R respectively.
Points P, Q, and R are collinear if they lie on a line.

Where You Get Complete Knowledge

$$
\begin{aligned}
\mathrm{PQ} & =\sqrt{(1+2)^{2}+(2-3)^{2}+(3-5)^{2}} \\
& =\sqrt{(3)^{2}+(-1)^{2}+(-2)^{2}} \\
& =\sqrt{9+1+4} \\
& =\sqrt{14} \\
\mathrm{QR} & =\sqrt{(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}} \\
& =\sqrt{(6)^{2}+(-2)^{2}+(-4)^{2}} \\
& =\sqrt{36+4+16} \\
& =\sqrt{56} \\
& =2 \sqrt{14}
\end{aligned}
$$

$$
\begin{aligned}
P R= & \sqrt{(7+2)^{2}+(0-3)^{2}+(-1-5)^{2}} \\
& =\sqrt{(9)^{2}+(-3)^{2}+(-6)^{2}} \\
& =\sqrt{81+9+36} \\
& =\sqrt{126} \\
& =3 \sqrt{14}
\end{aligned}
$$

Here, $\mathrm{PQ}+\mathrm{QR}=\sqrt{14}+2 \sqrt{14}=3 \sqrt{14}=\mathrm{PR}$
Hence, points $P(-2,3,5), Q(1,2,3)$, and $R(7,0,-1)$ are collinear.

Question 3:

Verify the following:
(i) $(0,7,-10),(1,6,-6)$ and $(4,9,-6)$ are the vertices of an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right angled triangle.
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$ and $(2,-3,4)$ are the vertices of a parallelogram.
(i) Let points $(0,7,-10),(1,6,-6)$, and $(4,9,-6)$ be denoted by A, B, and C respectively.

Where You Get Complete Knowledge

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(1-0)^{2}+(6-7)^{2}+(-6+10)^{2}} \\
& =\sqrt{(1)^{2}+(-1)^{2}+(4)^{2}} \\
& =\sqrt{1+1+16} \\
& =\sqrt{18} \\
& =3 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BC} & =\sqrt{(4-1)^{2}+(9-6)^{2}+(-6+6)^{2}} \\
& =\sqrt{(3)^{2}+(3)^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
C A & =\sqrt{(0-4)^{2}+(7-9)^{2}+(-10+6)^{2}} \\
& =\sqrt{(-4)^{2}+(-2)^{2}+(-4)^{2}} \\
& =\sqrt{16+4+16}=\sqrt{36}=6
\end{aligned}
$$

Here, $\mathrm{AB}=\mathrm{BC} \neq \mathrm{CA}$
Thus, the given points are the vertices of an isosceles triangle.
(ii) Let $(0,7,10),(-1,6,6)$, and $(-4,9,6)$ be denoted by A, B, and C respectively.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}} \\
& =\sqrt{(-1)^{2}+(-1)^{2}+(-4)^{2}} \\
& =\sqrt{1+1+16}=\sqrt{18} \\
& =3 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BC} & =\sqrt{(-4+1)^{2}+(9-6)^{2}+(6-6)^{2}} \\
& =\sqrt{(-3)^{2}+(3)^{2}+(0)^{2}} \\
& =\sqrt{9+9}=\sqrt{18} \\
& =3 \sqrt{2}
\end{aligned}
$$

Where You Get Complete Knowledge

$$
\begin{aligned}
\mathrm{CA} & =\sqrt{(0+4)^{2}+(7-9)^{2}+(10-6)^{2}} \\
& =\sqrt{(4)^{2}+(-2)^{2}+(4)^{2}} \\
& =\sqrt{16+4+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

Now, $\mathrm{AB}^{2}+\mathrm{BC}^{2}=(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}=18+18=36=\mathrm{AC}^{2}$

Therefore, by Pythagoras theorem, ABC is a right triangle.
Hence, the given points are the vertices of a right-angled triangle.
(iii) Let $(-1,2,1),(1,-2,5),(4,-7,8)$, and $(2,-3,4)$ be denoted by A, B, C, and D respectively.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(1+1)^{2}+(-2-2)^{2}+(5-1)^{2}} \\
& =\sqrt{4+16+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BC} & =\sqrt{(4-1)^{2}+(-7+2)^{2}+(8-5)^{2}} \\
& =\sqrt{9+25+9}=\sqrt{43}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{CD} & =\sqrt{(2-4)^{2}+(-3+7)^{2}+(4-8)^{2}} \\
& =\sqrt{4+16+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{DA} & =\sqrt{(-1-2)^{2}+(2+3)^{2}+(1-4)^{2}} \\
& =\sqrt{9+25+9}=\sqrt{43}
\end{aligned}
$$

Here, $\mathrm{AB}=\mathrm{CD}=6, \mathrm{BC}=\mathrm{AD}=\sqrt{43}$

Hence, the opposite sides of quadrilateral ABCD , whose vertices are taken in order, are equal.

Therefore, ABCD is a parallelogram.
Hence, the given points are the vertices of a parallelogram.

Question 4:

Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and ($3,2,-1$).

Let $\mathrm{P}(x, y, z)$ be the point that is equidistant from points $\mathrm{A}(1,2,3)$ and $\mathrm{B}(3,2,-1)$.
Accordingly, $\mathrm{PA}=\mathrm{PB}$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$
$\Rightarrow(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=(x-3)^{2}+(y-2)^{2}+(z+1)^{2}$
$\Rightarrow x^{2}-2 x+1+y^{2}-4 y+4+z^{2}-6 z+9=x^{2}-6 x+9+y^{2}-4 y+4+z^{2}+2 z+1$
$\Rightarrow-2 x-4 y-6 z+14=-6 x-4 y+2 z+14$
$\Rightarrow-2 x-6 z+6 x-2 z=0$
$\Rightarrow 4 x-8 z=0$
$\Rightarrow x-2 z=0$

Thus, the required equation is $x-2 z=0$.

Question 5:

Find the equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and B $(-4,0,0)$ is equal to 10 .

Let the coordinates of P be (x, y, z).
The coordinates of points A and B are $(4,0,0)$ and $(-4,0,0)$ respectively.

It is given that $\mathrm{PA}+\mathrm{PB}=10$.

$$
\begin{aligned}
& \Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}+\sqrt{(x+4)^{2}+y^{2}+z^{2}}=10 \\
& \Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}=10-\sqrt{(x+4)^{2}+y^{2}+z^{2}}
\end{aligned}
$$

On squaring both sides, we obtain

$$
\begin{aligned}
& \Rightarrow(x-4)^{2}+y^{2}+z^{2}=100-20 \sqrt{(x+4)^{2}+y^{2}+z^{2}}+(x+4)^{2}+y^{2}+z^{2} \\
& \Rightarrow x^{2}-8 x+16+y^{2}+z^{2}=100-20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}+x^{2}+8 x+16+y^{2}+z^{2} \\
& \Rightarrow 20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=100+16 x \\
& \Rightarrow 5 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=(25+4 x)
\end{aligned}
$$

On squaring both sides again, we obtain
$25\left(x^{2}+8 x+16+y^{2}+z^{2}\right)=625+16 x^{2}+200 x$
$\Rightarrow 25 x^{2}+200 x+400+25 y^{2}+25 z^{2}=625+16 x^{2}+200 x$
$\Rightarrow 9 x^{2}+25 y^{2}+25 z^{2}-225=0$
Thus, the required equation is $9 x^{2}+25 y^{2}+25 z^{2}-225=0$.

EXERCISE:-12.3

Question 1:

Find the coordinates of the point which divides the line segment joining the points $(-2,3$, $5)$ and (1, $-4,6$) in the ratio (i) $2: 3$ internally, (ii) $2: 3$ externally.
(i) The coordinates of point R that divides the line segment joining points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ internally in the ratio m : n are

$$
\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right) .
$$

Let $\mathrm{R}(x, y, z)$ be the point that divides the line segment joining points $(-2,3,5)$ and $(1,-$ 4,6) internally in the ratio $2: 3$

$$
\begin{aligned}
& x=\frac{2(1)+3(-2)}{2+3}, y=\frac{2(-4)+3(3)}{2+3} \text {, and } z=\frac{2(6)+3(5)}{2+3} \\
& \text { i.e., } x=\frac{-4}{5}, y=\frac{1}{5} \text {, and } z=\frac{27}{5}
\end{aligned}
$$

Thus, the coordinates of the required point are $\left(-\frac{4}{5}, \frac{1}{5}, \frac{27}{5}\right)$.
(ii) The coordinates of point R that divides the line segment joining points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ externally in the ratio $m: n$ are

$$
\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right) .
$$

Let $\mathrm{R}(x, y, z)$ be the point that divides the line segment joining points($-2,3,5$) and $(1,-$ 4,6) externally in the ratio $2: 3$

$$
x=\frac{2(1)-3(-2)}{2-3}, y=\frac{2(-4)-3(3)}{2-3} \text {, and } z=\frac{2(6)-3(5)}{2-3}
$$

i.e., $x=-8, y=17$, and $z=3$

Thus, the coordinates of the required point are $(-8,17,3)$.

Question 2:

Given that $\mathrm{P}(3,2,-4), \mathrm{Q}(5,4,-6)$ and $\mathrm{R}(9,8,-10)$ are collinear. Find the ratio in which Q divides PR .

Let point $\mathrm{Q}(5,4,-6)$ divide the line segment joining points $\mathrm{P}(3,2,-4)$ and $\mathrm{R}(9,8,-10)$ in the ratio $k: 1$.

Therefore, by section formula,
$(5,4,-6)=\left(\frac{k(9)+3}{k+1}, \frac{k(8)+2}{k+1}, \frac{k(-10)-4}{k+1}\right)$

Where You Get Complete Knowledge
$\Rightarrow \frac{9 k+3}{k+1}=5$
$\Rightarrow 9 k+3=5 k+5$
$\Rightarrow 4 k=2$
$\Rightarrow k=\frac{2}{4}=\frac{1}{2}$
Thus, point Q divides PR in the ratio 1:2.

Question 3:

Find the ratio in which the YZ-plane divides the line segment formed by joining the points $(-2,4,7)$ and $(3,-5,8)$.

Let the YZ planedivide the line segment joining points $(-2,4,7)$ and $(3,-5,8)$ in the ratio $k: 1$.

Hence, by section formula, the coordinates of point of intersection are given by $\left(\frac{k(3)-2}{k+1}, \frac{k(-5)+4}{k+1}, \frac{k(8)+7}{k+1}\right)$

On the YZ plane, the x-coordinate of any point is zero.
$\frac{3 k-2}{k+1}=0$
$\Rightarrow 3 k-2=0$
$\Rightarrow k=\frac{2}{3}$
Thus, the YZ plane divides the line segment formed by joining the given points in the ratio 2:3.

Question 4:

Using section formula, show that the points A $(2,-3,4), \mathrm{B}(-1,2,1)$ and $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$ are collinear.

The given points are A $(2,-3,4), \mathrm{B}(-1,2,1)$, and $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$.

Where You Get Complete Knowledge

Let P be a point that divides AB in the ratio $k: 1$.

Hence, by section formula, the coordinates of P are given by
$\left(\frac{k(-1)+2}{k+1}, \frac{k(2)-3}{k+1}, \frac{k(1)+4}{k+1}\right)$
Now, we find the value of k at which point P coincides with point C .
By taking $\frac{-k+2}{k+1}=0$, we obtain $k=2$.
For $k=2$, the coordinates of point P are $\left(0, \frac{1}{3}, 2\right)$.
i.e., $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$ is a point that divides AB externally in the ratio $2: 1$ and is the same as point P.

Hence, points A, B, and C are collinear.

Question 5:

Find the coordinates of the points which trisect the line segment joining the points $\mathrm{P}(4,2$, $-6)$ and $Q(10,-16,6)$.

Let A and B be the points that trisect the line segment joining points $\mathrm{P}(4,2,-6)$ and Q $(10,-16,6)$

Point A divides PQ in the ratio 1:2. Therefore, by section formula, the coordinates of point A are given by
$\left(\frac{1(10)+2(4)}{1+2}, \frac{1(-16)+2(2)}{1+2}, \frac{1(6)+2(-6)}{1+2}\right)=(6,-4,-2)$

Where You Get Complete Knowledge

Point B divides PQ in the ratio $2: 1$. Therefore, by section formula, the coordinates of point B are given by

$$
\left(\frac{2(10)+1(4)}{2+1}, \frac{2(-16)+1(2)}{2+1}, \frac{2(6)-1(6)}{2+1}\right)=(8,-10,2)
$$

Thus, $(6,-4,-2)$ and $(8,-10,2)$ are the points that trisect the line segment joining points $\mathrm{P}(4,2,-6)$ and $\mathrm{Q}(10,-16,6)$.

