EXERCISE:-13.1

Question 1:

Evaluate the Given limit: $\lim _{x \rightarrow 3} x+3$

$$
\lim _{x \rightarrow 3} x+3=3+3=6
$$

Question 2:

Evaluate the Given limit: $\lim _{x \rightarrow \pi}\left(x-\frac{22}{7}\right)$

$$
\lim _{x \rightarrow \pi}\left(x-\frac{22}{7}\right)=\left(\pi-\frac{22}{7}\right)
$$

Question 3:

Evaluate the Given limit: $\lim _{r \rightarrow 1} \pi r^{2}$
$\lim _{r \rightarrow 1} \pi r^{2}=\pi(1)^{2}=\pi$

Question 4:

Evaluate the Given limit: $\lim _{x \rightarrow 4} \frac{4 x+3}{x-2}$
$\lim _{x \rightarrow 4} \frac{4 x+3}{x-2}=\frac{4(4)+3}{4-2}=\frac{16+3}{2}=\frac{19}{2}$

Question 5:

Evaluate the Given limit: $\lim _{x \rightarrow-1} \frac{x^{10}+x^{5}+1}{x-1}$

$$
\lim _{x \rightarrow-1} \frac{x^{10}+x^{5}+1}{x-1}=\frac{(-1)^{10}+(-1)^{5}+1}{-1-1}=\frac{1-1+1}{-2}=-\frac{1}{2}
$$

Question 6:

Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{(x+1)^{5}-1}{x}$
$\lim _{x \rightarrow 0} \frac{(x+1)^{5}-1}{x}$
Put $x+1=y$ so that $y \rightarrow 1$ as $x \rightarrow 0$.
Accordingly, $\lim _{x \rightarrow 0} \frac{(x+1)^{5}-1}{x}=\lim _{y \rightarrow 1} \frac{y^{5}-1}{y-1}$

$$
\begin{array}{ll}
=\lim _{y \rightarrow 1} \frac{y^{5}-1^{5}}{y-1} & \\
=5.1^{5-1} & {\left[\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right]} \\
=5 &
\end{array}
$$

$\therefore \lim _{x \rightarrow 0} \frac{(x+5)^{5}-1}{x}=5$

Question 7:

Evaluate the Given limit: $\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4}$

At $x=2$, the value of the given rational function takes the form $\frac{0}{0}$.

$$
\begin{aligned}
\therefore \lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4} & =\lim _{x \rightarrow 2} \frac{(x-2)(3 x+5)}{(x-2)(x+2)} \\
& =\lim _{x \rightarrow 2} \frac{3 x+5}{x+2} \\
& =\frac{3(2)+5}{2+2} \\
& =\frac{11}{4}
\end{aligned}
$$

Question 8:

Evaluate the Given limit: $\lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3}$
At $x=2$, the value of the given rational function takes the form $\frac{0}{0}$.

$$
\begin{aligned}
\therefore \lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3} & =\lim _{x \rightarrow 3} \frac{(x-3)(x+3)\left(x^{2}+9\right)}{(x-3)(2 x+1)} \\
& =\lim _{x \rightarrow 3} \frac{(x+3)\left(x^{2}+9\right)}{2 x+1} \\
& =\frac{(3+3)\left(3^{2}+9\right)}{2(3)+1} \\
& =\frac{6 \times 18}{7} \\
& =\frac{108}{7}
\end{aligned}
$$

Question 9:

Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{a x+b}{c x+1}$
$\lim _{x \rightarrow 0} \frac{a x+b}{c x+1}=\frac{a(0)+b}{c(0)+1}=b$
Question 10:
Evaluate the Given limit: $\lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}$
$\lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}$

At $z=1$, the value of the given function takes the form $\frac{0}{0}$.

Put $z^{\frac{1}{6}}=x$ so that $z \rightarrow 1$ as $x \rightarrow 1$.
Accordingly, $\lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1} \\
& =2.1^{2-1} \\
& =2
\end{aligned}
$$

$\therefore \lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}=2$

Question 11:

Evaluate the Given limit: $\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}, a+b+c \neq 0$

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a} & =\frac{a(1)^{2}+b(1)+c}{c(1)^{2}+b(1)+a} \\
& =\frac{a+b+c}{a+b+c} \\
& =1 \quad[a+b+c \neq 0]
\end{aligned}
$$

Question 12:

Evaluate the Given limit: $\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}$
$\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}$
At $x=-2$, the value of the given function takes the form $\frac{0}{0}$.

Where You Get Complete Knowledge
Now, $\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}=\lim _{x \rightarrow-2} \frac{\left(\frac{2+x}{2 x}\right)}{x+2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{1}{2 x} \\
& =\frac{1}{2(-2)}=\frac{-1}{4}
\end{aligned}
$$

Question 13:

Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{\sin a x}{b x}$
$\lim _{x \rightarrow 0} \frac{\sin a x}{b x}$
At $x=0$, the value of the given function takes the form $\frac{0}{0}$.
Now, $\lim _{x \rightarrow 0} \frac{\sin a x}{b x}=\lim _{x \rightarrow 0} \frac{\sin a x}{a x} \times \frac{a x}{b x}$

$$
\begin{array}{ll}
=\lim _{x \rightarrow 0}\left(\frac{\sin a x}{a x}\right) \times\left(\frac{a}{b}\right) & \\
=\frac{a}{b} \lim _{a x \rightarrow 0}\left(\frac{\sin a x}{a x}\right) & \\
=\frac{a}{b} \times 1 & {[x \rightarrow 0 \Rightarrow a x \rightarrow 0]} \\
=\frac{a}{b} &
\end{array}
$$

Question 14:

Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}, a, b \neq 0$
$\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}, a, b \neq 0$
At $x=0$, the value of the given function takes the form $\frac{0}{0}$.

Where You Get Complete Knowledge

Now, $\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}=\lim _{x \rightarrow 0} \frac{\left(\frac{\sin a x}{a x}\right) \times a x}{\left(\frac{\sin b x}{b x}\right) \times b x}$
$=\left(\frac{a}{b}\right) \times \frac{\lim _{\alpha x \rightarrow 0}\left(\frac{\sin a x}{a x}\right)}{\lim _{b x \rightarrow 0}\left(\frac{\sin b x}{b x}\right)} \quad\left[\begin{array}{l}x \rightarrow 0 \Rightarrow a x \rightarrow 0 \\ \text { and } x \rightarrow 0 \Rightarrow b x \rightarrow 0\end{array}\right]$
$=\left(\frac{a}{b}\right) \times \frac{1}{1} \quad\left[\lim _{y \rightarrow 0} \frac{\sin y}{y}=1\right]$
$=\frac{a}{b}$

Question 15:

Evaluate the Given limit: $\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}$

$$
\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}
$$

It is seen that $x \rightarrow \pi \Rightarrow(\pi-x) \rightarrow 0$

$$
\begin{aligned}
\therefore \lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)} & =\frac{1}{\pi} \lim _{(\pi-x) \rightarrow 0} \frac{\sin (\pi-x)}{(\pi-x)} \\
& =\frac{1}{\pi} \times 1 \quad\left[\lim _{y \rightarrow 0} \frac{\sin y}{y}=1\right] \\
& =\frac{1}{\pi}
\end{aligned}
$$

Question 16:
Evaluate the given limit: $\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}$

$$
\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}=\frac{\cos 0}{\pi-0}=\frac{1}{\pi}
$$

Question 17:

Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}$

$$
\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}
$$

At $x=0$, the value of the given function takes the form $\frac{0}{0}$.
Now,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1} & =\lim _{x \rightarrow 0} \frac{1-2 \sin ^{2} x-1}{1-2 \sin ^{2} \frac{x}{2}-1} \quad\left[\cos x=1-2 \sin ^{2} \frac{x}{2}\right] \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sin ^{2} \frac{x}{2}}=\lim _{x \rightarrow 0} \frac{\left(\frac{\sin ^{2} x}{x^{2}}\right) \times x^{2}}{\left(\frac{\sin ^{2} \frac{x}{2}}{\left(\frac{x}{2}\right)^{2}}\right) \times \frac{x^{2}}{4}} \\
& =4 \frac{\lim _{x \rightarrow 0}\left(\frac{\sin ^{2} x}{x^{2}}\right)}{\left(\frac{\sin ^{2} \frac{x}{2}}{2}\right.} \\
& =4 \frac{\left.\lim _{x \rightarrow 0}\left(\frac{x}{2}\right)^{2}\right)}{\left(\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}\right)^{2}} \\
& =4 \frac{1^{2}}{1^{2}} \\
& =4
\end{aligned}
$$

Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}$

$$
\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}
$$

At $x=0$, the value of the given function takes the form $\frac{0}{0}$.
Now,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x} & =\frac{1}{b} \lim _{x \rightarrow 0} \frac{x(a+\cos x)}{\sin x} \\
& =\frac{1}{b} \lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right) \times \lim _{x \rightarrow 0}(a+\cos x) \\
& =\frac{1}{b} \times \frac{1}{\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)} \times \lim _{x \rightarrow 0}(a+\cos x) \\
& =\frac{1}{b} \times(a+\cos 0) \quad \quad\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\
& =\frac{a+1}{b} \quad
\end{aligned}
$$

Question 19:

Evaluate the Given limit: $\lim _{x \rightarrow 0} x \sec x$
$\lim _{x \rightarrow 0} x \sec x=\lim _{x \rightarrow 0} \frac{x}{\cos x}=\frac{0}{\cos 0}=\frac{0}{1}=0$
Question 20:
Evaluate the Given limit: $\lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x} a, b, a+b \neq 0$

At $x=0$, the value of the given function takes the form $\frac{0}{0}$.

Now,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x} \\
& =\lim _{x \rightarrow 0} \frac{\left(\frac{\sin a x}{a x}\right) a x+b x}{a x+b x\left(\frac{\sin b x}{b x}\right)} \\
& =\frac{\left(\lim _{a x \rightarrow 0} \frac{\sin a x}{a x}\right) \times \lim _{x \rightarrow 0}(a x)+\lim _{x \rightarrow 0} b x}{\lim _{x \rightarrow 0} a x+\lim _{x \rightarrow 0} b x\left(\lim _{b x \rightarrow 0} \frac{\sin b x}{b x}\right)} \\
& =\frac{\lim _{x \rightarrow 0}(a x)+\lim _{x \rightarrow 0} b x}{\lim _{x \rightarrow 0} a x+\lim _{x \rightarrow 0} b x} \\
& =\frac{\lim _{x \rightarrow 0}(a x+b x)}{\lim _{x \rightarrow 0}(a x+b x)} \\
& =\lim _{x \rightarrow 0}(1) \\
& =1
\end{aligned}
$$

Question 21:
Evaluate the Given limit: $\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$

At $x=0$, the value of the given function takes the form $\infty-\infty$.
Now,

EDUCATION CENTRE

Where You Get Complete Knowledge
$\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$
$=\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{\cos x}{\sin x}\right)$
$=\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{\sin x}\right)$
$=\lim _{x \rightarrow 0} \frac{\left(\frac{1-\cos x}{x}\right)}{\left(\frac{\sin x}{x}\right)}$
$=\frac{\lim _{x \rightarrow 0} \frac{1-\cos x}{x}}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}$
$=\frac{\mathrm{O}}{1}$
$\left[\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0\right.$ and $\left.\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
$=0$

Question 22:
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}$
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}$

At $x=\frac{\pi}{2}$, the value of the given function takes the form $\frac{0}{0}$.

Now, put $x-\frac{\pi}{2}=y$ so that $x \rightarrow \frac{\pi}{2}, y \rightarrow 0$.

Where You Get Complete Knowledge

$$
\begin{aligned}
\therefore \lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}} & =\lim _{y \rightarrow 0} \frac{\tan 2\left(y+\frac{\pi}{2}\right)}{y} \\
& =\lim _{y \rightarrow 0} \frac{\tan (\pi+2 y)}{y} \\
& =\lim _{y \rightarrow 0} \frac{\tan 2 y}{y} \\
& =\lim _{y \rightarrow 0} \frac{\sin 2 y}{y \cos 2 y} \\
& =\lim _{y \rightarrow 0}\left(\frac{\sin 2 y}{2 y} \times \frac{2}{\cos 2 y}\right) \\
& =\left(\lim _{2 y \rightarrow 0} \frac{\sin 2 y}{2 y}\right) \times \lim _{y \rightarrow 0}\left(\frac{2}{\cos 2 y}\right) \quad[\tan (\pi+2 y)=\tan 2 y] \\
& =1 \times \frac{2}{\cos 0} \\
& =1 \times \frac{2}{1} \\
& =2
\end{aligned} \quad[y \rightarrow 0 \Rightarrow 2 y \rightarrow 0]
$$

Question 23:

Find $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}2 x+3, & x \leq 0 \\ 3(x+1), & x>0\end{cases}$
The given function is
$f(x)= \begin{cases}2 x+3, & x \leq 0 \\ 3(x+1), & x>0\end{cases}$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}[2 x+3]=2(0)+3=3$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} 3(x+1)=3(0+1)=3$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} f(x)=3$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 3(x+1)=3(1+1)=6$

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} 3(x+1)=3(1+1)=6
$$

$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)=6$

Question 24:

Find $\lim _{x \rightarrow 1} f(x)$, where $f(x)= \begin{cases}x^{2}-1, & x \leq 1 \\ -x^{2}-1, & x>1\end{cases}$
The given function is
$f(x)=\left\{\begin{array}{l}x^{2}-1, x \leq 1 \\ -x^{2}-1, x>1\end{array}\right.$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left[x^{2}-1\right]=1^{2}-1=1-1=0$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left[-x^{2}-1\right]=-1^{2}-1=-1-1=-2$
It is observed that $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$.
Hence, $\lim _{x \rightarrow 1} f(x)$ does not exist.

Question 25:

Evaluate $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$
The given function is
$f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}\left[\frac{|x|}{x}\right] \\
& =\lim _{x \rightarrow 0}\left(\frac{-x}{x}\right) \quad[\text { When } x \text { is negaitve, }|x|=-x] \\
& =\lim _{x \rightarrow 0}(-1) \\
& =-1
\end{aligned}
$$

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left[\frac{|x|}{x}\right]
$$

$$
=\lim _{x \rightarrow 0}\left[\frac{x}{x}\right] \quad[\text { When } x \text { is positive, }|x|=x]
$$

$$
=\lim _{x \rightarrow 0}(1)
$$

$$
=1
$$

It is observed that $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$.
Hence, $\lim _{x \rightarrow 0} f(x)$ does not exist.
Question 26:
Find $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}\frac{x}{|x|}, & x \neq 0 \\ 0, & x=0\end{cases}$
The given function is

$$
f(x)= \begin{cases}\frac{x}{|x|}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}\left[\frac{x}{|x|}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{x}{-x}\right] \quad[\text { When } x<0,|x|=-x] \\
& =\lim _{x \rightarrow 0}(-1) \\
& =-1
\end{aligned}
$$

$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left[\frac{x}{|x|}\right]$

$$
=\lim _{x \rightarrow 0}\left[\frac{x}{x}\right] \quad[\text { When } x>0,|x|=x]
$$

$$
=\lim _{x \rightarrow 0}(1)
$$

$$
=1
$$

It is observed that $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$.
Hence, $\lim _{x \rightarrow 0} f(x)$ does not exist.

Question 27:

Find $\lim _{x \rightarrow 5} f(x)$, where $f(x)=|x|-5$
The given function is $f(x)=|x|-5$.

Where You Get Complete Knowledge

$$
\begin{array}{rlr}
\lim _{x \rightarrow 5} f(x) & =\lim _{x \rightarrow 5^{-}}[|x|-5] \\
& =\lim _{x \rightarrow 5}(x-5) \quad[\text { When } x>0,|x|=x] \\
& =5-5 \\
& =0 & \\
\lim _{x \rightarrow 5^{+}} f(x) & =\lim _{x \rightarrow 5^{+}}(|x|-5) \\
& =\lim _{x \rightarrow 5}(x-5) \quad \quad[\text { When } x>0,|x|=x] \\
& =5-5 \\
& =0
\end{array}
$$

$\therefore \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=0$
Hence, $\lim _{x \rightarrow 5} f(x)=0$

Question 28:

Suppose $f(x)=\left\{\begin{array}{ll}a+b x, & x<1 \\ 4, & x=1 \\ b-a x & x>1\end{array}\right.$ and if $\lim _{x \rightarrow 1} f(x)=f(1)$ what are possible values of a and b ?
The given function is
$f(x)= \begin{cases}a+b x, & x<1 \\ 4, & x=1 \\ b-a x & x>1\end{cases}$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}(a+b x)=a+b$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}(b-a x)=b-a$
$f(1)=4$
It is given that $\lim _{x \rightarrow 1} f(x)=f(1)$.
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)=f(1)$
$\Rightarrow a+b=4$ and $b-a=4$
On solving these two equations, we obtain $a=0$ and $b=4$.
Thus, the respective possible values of a and b are 0 and 4 .

Question 29:

Let $a_{1}, a_{2}, \ldots, a_{n}$ be fixed real numbers and define a function

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)
$$

What is $\lim _{x \rightarrow a_{1}} f(x)$? For some $a \neq a_{1}, a_{2} \ldots, a_{n,}$ compute $\lim _{x \rightarrow a} f(x)$.
The given function is $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)$

$$
\begin{aligned}
& \lim _{x \rightarrow a_{1}} f(x)= \\
& =\lim _{x \rightarrow a_{1}}\left[\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)\right] \\
& \\
& =\left[\lim _{x \rightarrow a_{1}}\left(x-a_{1}\right)\right]\left[\lim _{x \rightarrow a_{1}}\left(x-a_{2}\right)\right] \ldots\left[\lim _{x \rightarrow a_{1}}\left(x-a_{n}\right)\right] \\
& \\
& =
\end{aligned} \begin{aligned}
\therefore \lim _{x \rightarrow a_{1}} f\left(a_{1}\right)\left(a_{1}-a_{2}\right) \ldots\left(a_{1}-a_{n}\right)=0
\end{aligned}
$$

Now, $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\left[\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)\right]$

$$
=\left[\lim _{x \rightarrow a}\left(x-a_{1}\right)\right]\left[\lim _{x \rightarrow a}\left(x-a_{2}\right)\right] \ldots\left[\lim _{x \rightarrow a}\left(x-a_{n}\right)\right]
$$

$$
=\left(a-a_{1}\right)\left(a-a_{2}\right) \ldots \ldots\left(a-a_{n}\right)
$$

$\therefore \lim _{x \rightarrow a} f(x)=\left(a-a_{1}\right)\left(a-a_{2}\right) \ldots\left(a-a_{n}\right)$

Question 30:

If $f(x)= \begin{cases}|x|+1, & x<0 \\ 0, & x=0 \\ |x|-1, & x>0 .\end{cases}$
For what value (s) of a does $\lim _{x \rightarrow a} f(x)$ exists?
The given function is
$f(x)= \begin{cases}|x|+1, & x<0 \\ 0, & x=0 \\ |x|-1, & x>0\end{cases}$

When $a=0$,

$$
\begin{array}{rlr}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}(|x|+1) & \\
& =\lim _{x \rightarrow 0}(-x+1) & \quad[\text { If } x<0,|x|=-x] \\
& =-0+1 & \\
& =1 & \\
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{0^{0}}}(|x|-1) & \\
& =\lim _{x \rightarrow 0}(x-1) & {[\text { If } x>0,|x|=x]} \\
& =0-1 & \\
& =-1 &
\end{array}
$$

Here, it is observed that $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$.
$\therefore \lim _{x \rightarrow 0} f(x)$ does not exist.
When $a<0$,

$$
\begin{aligned}
\lim _{x \rightarrow a^{-}} f(x) & =\lim _{x \rightarrow a^{-}}(|x|+1) \\
& =\lim _{x \rightarrow a}(-x+1) \quad[x<a<0 \Rightarrow|x|=-x] \\
& =-a+1
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow a^{+}} f(x) & =\lim _{x \rightarrow a^{+}}(|x|+1) \\
& =\lim _{x \rightarrow a}(-x+1) \quad[a<x<0 \Rightarrow|x|=-x] \\
& =-a+1
\end{aligned}
$$

$\therefore \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=-a+1$
Thus, limit of $f(x)$ exists at $x=a$, where $a<0$.

When $a>0$

EDUCATION CENTRE

Where You Get Complete Knowledge

$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}}(|x|-1)$

$$
\begin{aligned}
& =\lim _{x \rightarrow a}(x-1) \quad[0<x<a \Rightarrow|x|=x] \\
& =a-1
\end{aligned}
$$

$\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}}(|x|-1)$
$=\lim _{x \rightarrow a}(x-1) \quad[0<a<x \Rightarrow|x|=x]$
$=a-1$
$\therefore \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=a-1$
Thus, limit of $f(x)$ exists at $x=a$, where $a>0$.
Thus, $\lim _{x \rightarrow a} f(x)$ exists for all $a \neq 0$.

Question 31:

If the function $f(x)$ satisfies $\lim _{x \rightarrow 1} \frac{f(x)-2}{x^{2}-1}=\pi$, evaluate $\lim _{x \rightarrow 1} f(x)$.
$\lim _{x \rightarrow 1} \frac{f(x)-2}{x^{2}-1}=\pi$
$\Rightarrow \frac{\lim _{x \rightarrow 1}(\mathrm{f}(\mathrm{x})-2)}{\lim _{\mathrm{x} \rightarrow 1}\left(\mathrm{x}^{2}-1\right)}=\pi$
$\Rightarrow \lim _{\mathrm{x} \rightarrow 1}(\mathrm{f}(\mathrm{x})-2)=\pi \lim _{\mathrm{x} \rightarrow 1}\left(\mathrm{x}^{2}-1\right)$
$\Rightarrow \lim _{\mathrm{x} \rightarrow 1}(\mathrm{f}(\mathrm{x})-2)=\pi\left(1^{2}-1\right)$
$\Rightarrow \lim _{x \rightarrow 1}(\mathrm{f}(\mathrm{x})-2)=0$
$\Rightarrow \lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} 2=0$
$\Rightarrow \lim _{x \rightarrow 1} f(x)-2=0$
$\therefore \lim _{x \rightarrow 1} f(x)=2$

Question 32:

$f(x)= \begin{cases}m x^{2}+n, & x<0 \\ n x+m, & 0 \leq x \leq 1 \\ n x^{3}+m, & x>1 \quad . \text { For what integers } m \text { and } n \text { does } \lim _{x \rightarrow 0} f(x) \text { and } \lim _{x \rightarrow 1} f(x)\end{cases}$ exist?

Where You Get Complete Knowledge
The given function is

$$
f(x)=\left\{\begin{array}{lc}
m x^{2}+n, & x<0 \\
n x+m, & 0 \leq x \leq 1 \\
n x^{3}+m, & x>1
\end{array}\right.
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0}\left(m x^{2}+n\right) \\
& =m(0)^{2}+n \\
& =n \\
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0}(n x+m) \\
& =n(0)+m \\
& =m .
\end{aligned}
$$

Thus, $\lim _{x \rightarrow 0} f(x)$ exists if $m=n$.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1}(n x+m) \\
& =n(1)+m \\
& =m+n \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1}\left(n x^{3}+m\right) \\
& =n(1)^{3}+m \\
& =m+n
\end{aligned}
$$

$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)$.
Thus, $\lim _{x \rightarrow 1} f(x)$ exists for any integral value of m and n.

EXERCISE:-13.2

Question 1:

Find the derivative of $x^{2}-2$ at $x=10$.
Let $f(x)=x^{2}-2$. Accordingly,

$$
\begin{aligned}
f^{\prime}(10) & =\lim _{h \rightarrow 0} \frac{f(10+h)-f(10)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(10+h)^{2}-2\right]-\left(10^{2}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{10^{2}+2 \cdot 10 \cdot h+h^{2}-2-10^{2}+2}{h} \\
& =\lim _{h \rightarrow 0} \frac{20 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(20+h)=(20+0)=20
\end{aligned}
$$

Thus, the derivative of $x^{2}-2$ at $x=10$ is 20 .

Question 2:

Find the derivative of $99 x$ at $x=100$.
Let $f(x)=99 x$. Accordingly,

$$
\begin{aligned}
f^{\prime}(100) & =\lim _{h \rightarrow 0} \frac{f(100+h)-f(100)}{h} \\
& =\lim _{h \rightarrow 0} \frac{99(100+h)-99(100)}{h} \\
& =\lim _{h \rightarrow 0} \frac{99 \times 100+99 h-99 \times 100}{h} \\
& =\lim _{h \rightarrow 0} \frac{99 h}{h} \\
& =\lim _{h \rightarrow 0}(99)=99
\end{aligned}
$$

Thus, the derivative of $99 x$ at $x=100$ is 99 .

Question 3:

Find the derivative of x at $x=1$.
Let $f(x)=x$. Accordingly,

Where You Get Complete Knowledge

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0}(1) \\
& =1
\end{aligned}
$$

Thus, the derivative of x at $x=1$ is 1 .

Question 4:

Find the derivative of the following functions from first principle.
(i) $x^{3}-27$ (ii) $(x-1)(x-2)$
(ii) $\frac{1}{x^{2}}$ (iv) $\frac{x+1}{x-1}$
(i) Let $f(x)=x^{3}-27$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-27\right]-\left(x^{3}-27\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+h^{3}+3 x^{2} h+3 x h^{2}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3}+3 x^{2} h+3 x h^{2}}{h} \\
& =\lim _{h \rightarrow 0}\left(h^{2}+3 x^{2}+3 x h\right) \\
& =0+3 x^{2}+0=3 x^{2}
\end{aligned}
$$

(ii) Let $f(x)=(x-1)(x-2)$. Accordingly, from the first principle,

Where You Get Complete Knowledge

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h-1)(x+h-2)-(x-1)(x-2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+h x-2 x+h x+h^{2}-2 h-x-h+2\right)-\left(x^{2}-2 x-x+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(h x+h x+h^{2}-2 h-h\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-3) \\
& =(2 x+0-3) \\
& =2 x-3
\end{aligned}
$$

(iii) Let $f(x)=\frac{1}{x^{2}}$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{x^{2}-(x+h)^{2}}{x^{2}(x+h)^{2}}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{x^{2}-x^{2}-h^{2}-2 h x}{x^{2}(x+h)^{2}}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-h^{2}-2 h x}{x^{2}(x+h)^{2}}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{-h-2 x}{x^{2}(x+h)^{2}}\right] \\
& =\frac{0-2 x}{x^{2}(x+0)^{2}}=\frac{-2}{x^{3}}
\end{aligned}
$$

(iv) Let $f(x)=\frac{x+1}{x-1}$. Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \\
& =\lim _{h \rightarrow 0} \frac{\left(\frac{x+h+1}{x+h-1}-\frac{x+1}{x-1}\right)}{h} \\
& \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{(x-1)(x+h+1)-(x+1)(x+h-1)}{(x-1)(x+h-1)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\left(x^{2}+h x+x-x-h-1\right)-\left(x^{2}+h x-x+x+h-1\right)}{(x-1)(x+h-1)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 h}{(x-1)(x+h-1)}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac { - 2 } { (x - 1) (x + h - 1) } \left[\frac{-2}{(x-1)(x-1)}=\frac{-2}{(x-1)^{2}}\right.\right.
\end{aligned}
$$

Question 5:

For the function

$$
f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1
$$

Prove that $f^{\prime}(1)=100 f^{\prime}(0)$
The given function is

Where You Get Complete Knowledge
$f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1$
$\frac{d}{d x} f(x)=\frac{d}{d x}\left[\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots+\frac{x^{2}}{2}+x+1\right]$
$\frac{d}{d x} f(x)=\frac{d}{d x}\left(\frac{x^{100}}{100}\right)+\frac{d}{d x}\left(\frac{x^{99}}{99}\right)+\ldots+\frac{d}{d x}\left(\frac{x^{2}}{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(1)$
On using theorem $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, we obtain

$$
\begin{aligned}
& \frac{d}{d x} f(x)=\frac{100 x^{99}}{100}+\frac{99 x^{98}}{99}+\ldots+\frac{2 x}{2}+1+0 \\
& \quad=x^{99}+x^{98}+\ldots+x+1 \\
& \therefore f^{\prime}(x)=x^{99}+x^{98}+\ldots+x+1
\end{aligned}
$$

At $x=0$,
$f^{\prime}(0)=1$
At $x=1$,
$f^{\prime}(1)=1^{99}+1^{98}+\ldots+1+1=[1+1+\ldots+1+1]_{100 \text { tems }}=1 \times 100=100$
Thus, $f^{\prime}(1)=100 \times f^{1}(0)$

Question 6:

Find the derivative of $x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}$ for some fixed real number a.
Let $f(x)=x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}$

$$
\begin{aligned}
\therefore f^{\prime}(x) & =\frac{d}{d x}\left(x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}\right) \\
& =\frac{d}{d x}\left(x^{n}\right)+a \frac{d}{d x}\left(x^{n-1}\right)+a^{2} \frac{d}{d x}\left(x^{n-2}\right)+\ldots+a^{n-1} \frac{d}{d x}(x)+a^{n} \frac{d}{d x}(1)
\end{aligned}
$$

On using theorem $\frac{d}{d x} x^{n}=n x^{n-1}$, we obtain

$$
\begin{aligned}
f^{\prime}(x) & =n x^{n-1}+a(n-1) x^{n-2}+a^{2}(n-2) x^{n-3}+\ldots+a^{n-1}+a^{n}(0) \\
& =n x^{n-1}+a(n-1) x^{n-2}+a^{2}(n-2) x^{n-3}+\ldots+a^{n-1}
\end{aligned}
$$

Question 7:

For some constants a and b, find the derivative of
(i) $(x-a)(x-b)($ ii $)\left(a x^{2}+b\right)^{2}$ (iii) $\frac{x-a}{x-b}$
(i) Let $f(x)=(x-a)(x-b)$

$$
\begin{aligned}
& \Rightarrow f(x)=x^{2}-(a+b) x+a b \\
& \begin{aligned}
\therefore f^{\prime}(x) & =\frac{d}{d x}\left(x^{2}-(a+b) x+a b\right) \\
& =\frac{d}{d x}\left(x^{2}\right)-(a+b) \frac{d}{d x}(x)+\frac{d}{d x}(a b)
\end{aligned}
\end{aligned}
$$

On using theorem $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, we obtain

$$
f^{\prime}(x)=2 x-(a+b)+0=2 x-a-b
$$

(ii) Let $f(x)=\left(a x^{2}+b\right)^{2}$

$$
\begin{aligned}
& \Rightarrow f(x)=a^{2} x^{4}+2 a b x^{2}+b^{2} \\
& \therefore f^{\prime}(x)=\frac{d}{d x}\left(a^{2} x^{4}+2 a b x^{2}+b^{2}\right)=a^{2} \frac{d}{d x}\left(x^{4}\right)+2 a b \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(b^{2}\right)
\end{aligned}
$$

On using theorem $\frac{d}{d x} x^{n}=n x^{n-1}$, we obtain

$$
\begin{aligned}
f^{\prime}(x) & =a^{2}\left(4 x^{3}\right)+2 a b(2 x)+b^{2}(0) \\
& =4 a^{2} x^{3}+4 a b x \\
& =4 a x\left(a x^{2}+b\right)
\end{aligned}
$$

Let $f(x)=\frac{(x-a)}{(x-b)}$

$$
\begin{equation*}
\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\frac{x-a}{x-b}\right) \tag{iii}
\end{equation*}
$$

By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-b) \frac{d}{d x}(x-a)-(x-a) \frac{d}{d x}(x-b)}{(x-b)^{2}} \\
& =\frac{(x-b)(1)-(x-a)(1)}{(x-b)^{2}} \\
& =\frac{x-b-x+a}{(x-b)^{2}} \\
& =\frac{a-b}{(x-b)^{2}}
\end{aligned}
$$

Question 8:

Find the derivative of $\frac{x^{n}-a^{n}}{x-a}$ for some constant a.

Let $f(x)=\frac{x^{n}-a^{n}}{x-a}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{n}-a^{n}}{x-a}\right)$

By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-a) \frac{d}{d x}\left(x^{n}-a^{n}\right)-\left(x^{n}-a^{n}\right) \frac{d}{d x}(x-a)}{(x-a)^{2}} \\
& =\frac{(x-a)\left(n x^{n-1}-0\right)-\left(x^{n}-a^{n}\right)}{(x-a)^{2}} \\
& =\frac{n x^{n}-a n x^{n-1}-x^{n}+a^{n}}{(x-a)^{2}}
\end{aligned}
$$

Question 9:

Find the derivative of
(i) $2 x-\frac{3}{4}$ (ii) $\left(5 x^{3}+3 x-1\right)(x-1)$
(iii) $x^{-3}(5+3 x)$ (iv) $x^{5}\left(3-6 x^{-9}\right)$
(v) $x^{-4}\left(3-4 x^{-5}\right)\left(\right.$ vi) $\frac{2}{x+1}-\frac{x^{2}}{3 x-1}$
(i) Let $f(x)=2 x-\frac{3}{4}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(2 x-\frac{3}{4}\right) \\
& =2 \frac{d}{d x}(x)-\frac{d}{d x}\left(\frac{3}{4}\right) \\
& =2-0 \\
& =2
\end{aligned}
$$

(ii) Let $f(x)=\left(5 x^{3}+3 x-1\right)(x-1)$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left(5 x^{3}+3 x-1\right) \frac{d}{d x}(x-1)+(x-1) \frac{d}{d x}\left(5 x^{3}+3 x-1\right) \\
& =\left(5 x^{3}+3 x-1\right)(1)+(x-1)\left(5.3 x^{2}+3-0\right) \\
& =\left(5 x^{3}+3 x-1\right)+(x-1)\left(15 x^{2}+3\right) \\
& =5 x^{3}+3 x-1+15 x^{3}+3 x-15 x^{2}-3 \\
& =20 x^{3}-15 x^{2}+6 x-4
\end{aligned}
$$

(iii) Let $f(x)=x^{-3}(5+3 x)$

By Leibnitz product rule,

Where You Get Complete Knowledge

$$
\begin{aligned}
f^{\prime}(x) & =x^{-3} \frac{d}{d x}(5+3 x)+(5+3 x) \frac{d}{d x}\left(x^{-3}\right) \\
& =x^{-3}(0+3)+(5+3 x)\left(-3 x^{-3-1}\right) \\
& =x^{-3}(3)+(5+3 x)\left(-3 x^{-4}\right) \\
& =3 x^{-3}-15 x^{-4}-9 x^{-3} \\
& =-6 x^{-3}-15 x^{-4} \\
& =-3 x^{-3}\left(2+\frac{5}{x}\right) \\
& =\frac{-3 x^{-3}}{x}(2 x+5) \\
& =\frac{-3}{x^{4}}(5+2 x)
\end{aligned}
$$

(iv) Let $f(x)=x^{5}\left(3-6 x^{-9}\right)$

By Leibnitz product rule,

$$
\begin{aligned}
f^{\prime}(x) & =x^{5} \frac{d}{d x}\left(3-6 x^{-9}\right)+\left(3-6 x^{-9}\right) \frac{d}{d x}\left(x^{5}\right) \\
& =x^{5}\left\{0-6(-9) x^{-9-1}\right\}+\left(3-6 x^{-9}\right)\left(5 x^{4}\right) \\
& =x^{5}\left(54 x^{-10}\right)+15 x^{4}-30 x^{-5} \\
& =54 x^{-5}+15 x^{4}-30 x^{-5} \\
& =24 x^{-5}+15 x^{4} \\
& =15 x^{4}+\frac{24}{x^{5}}
\end{aligned}
$$

(v) Let $f(x)=x^{-4}\left(3-4 x^{-5}\right)$

By Leibnitz product rule,

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
f^{\prime}(x) & =x^{-4} \frac{d}{d x}\left(3-4 x^{-5}\right)+\left(3-4 x^{-5}\right) \frac{d}{d x}\left(x^{-4}\right) \\
& =x^{-4}\left\{0-4(-5) x^{-5-1}\right\}+\left(3-4 x^{-5}\right)(-4) x^{-4-1} \\
& =x^{-4}\left(20 x^{-6}\right)+\left(3-4 x^{-5}\right)\left(-4 x^{-5}\right) \\
& =20 x^{-10}-12 x^{-5}+16 x^{-10} \\
& =36 x^{-10}-12 x^{-5} \\
& =-\frac{12}{x^{5}}+\frac{36}{x^{10}}
\end{aligned}
$$

(vi) Let $f(x)=\frac{2}{x+1}-\frac{x^{2}}{3 x-1}$

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{2}{x+1}\right)-\frac{d}{d x}\left(\frac{x^{2}}{3 x-1}\right)
$$

By quotient rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left[\frac{(x+1) \frac{d}{d x}(2)-2 \frac{d}{d x}(x+1)}{(x+1)^{2}}\right]-\left[\frac{(3 x-1) \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(3 x-1)}{(3 x-1)^{2}}\right] \\
& =\left[\frac{(x+1)(0)-2(1)}{(x+1)^{2}}\right]-\left[\frac{(3 x-1)(2 x)-\left(x^{2}\right)(3)}{(3 x-1)^{2}}\right] \\
& =\frac{-2}{(x+1)^{2}}-\left[\frac{6 x^{2}-2 x-3 x^{2}}{(3 x-1)^{2}}\right] \\
& =\frac{-2}{(x+1)^{2}}-\left[\frac{3 x^{2}-2 x^{2}}{(3 x-1)^{2}}\right] \\
& =\frac{-2}{(x+1)^{2}}-\frac{x(3 x-2)}{(3 x-1)^{2}}
\end{aligned}
$$

Question 10:

Find the derivative of $\cos x$ from first principle.

Let $f(x)=\cos x$. Accordingly, from the first principle,

Where You Get Complete Knowledge

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{\cos x \cos h-\sin x \sin h-\cos x}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)-\sin x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)}{h}-\frac{\sin x \sin h}{h}\right] \\
& =-\cos x\left(\lim _{h \rightarrow 0} \frac{1-\cos h}{h}\right)-\sin x \lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right) \\
& =-\cos x(0)-\sin x(1) \\
& =-\sin x \\
\therefore f^{\prime}(x) & =-\sin x
\end{aligned}
$$

Question 11:

Find the derivative of the following functions:
(i) $\sin x \cos x$ (ii) $\sec x$ (iii) $5 \sec x+4 \cos x$
(iv) $\operatorname{cosec} x$ (v) $3 \cot x+5 \operatorname{cosec} x$
(vi) $5 \sin x-6 \cos x+7$ (vii) $2 \tan x-7 \sec x$
(i) Let $f(x)=\sin x \cos x$. Accordingly, from the first principle,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h) \cos (x+h)-\sin x \cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}[2 \sin (x+h) \cos (x+h)-2 \sin x \cos x] \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}[\sin 2(x+h)-\sin 2 x] \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}\left[2 \cos \frac{2 x+2 h+2 x}{2} \cdot \sin \frac{2 x+2 h-2 x}{2}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\cos \frac{4 x+2 h}{2} \sin \frac{2 h}{2}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\cos (2 x+h) \sin h] \\
& =\lim _{h \rightarrow 0} \cos (2 x+h) \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\cos (2 x+0) \cdot 1 \\
& =\cos 2 x
\end{aligned}
$$

(ii) Let $f(x)=\sec x$. Accordingly, from the first principle,

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{\left[\sin \left(\frac{2 x+h}{2}\right) \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right]}{\cos (x+h)} \\
& =\frac{1}{\cos x} \cdot \lim _{\substack{h \rightarrow 0}} \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \lim _{h \rightarrow 0} \frac{\sin \left(\frac{2 x+h}{2}\right)}{\cos (x+h)} \\
& =\frac{1}{\cos x} \cdot 1 \cdot \frac{\sin x}{\cos x} \\
& =\sec x \tan x
\end{aligned}
$$

(iii) Let $f(x)=5 \sec x+4 \cos x$. Accordingly, from the first principle,

Where You Get Complete Knowledge

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 \sec (x+h)+4 \cos (x+h)-[5 \sec x+4 \cos x]}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{[\sec (x+h)-\sec x]}{h}+4 \lim _{h \rightarrow 0} \frac{[\cos (x+h)-\cos x]}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right]+4 \lim _{h \rightarrow 0} \frac{1}{h}[\cos (x+h)-\cos x] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right]+4 \lim _{h \rightarrow 0} \frac{1}{h}[\cos x \cos h-\sin x \sin h-\cos x] \\
& =\frac{5}{\cos x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\cos (x+h)}\right]+4 \lim _{h \rightarrow 0} \frac{1}{h}[-\cos x(1-\cos h)-\sin x \sin h] \\
& =\frac{5}{\cos x} . \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos (x+h)}\right]+4\left[-\cos x \lim _{h \rightarrow 0} \frac{(1-\cos h)}{h}-\sin x \lim _{h \rightarrow 0} \frac{\sin h}{h}\right] \\
& =\frac{5}{\cos x} \cdot \lim _{h \rightarrow 0}\left[\frac{\sin \left(\frac{2 x+h}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}}{\cos (x+h)}\right]+4[(-\cos x) \cdot(0)-(\sin x) \cdot 1] \\
& =\frac{5}{\cos x} \cdot\left[\lim _{h \rightarrow 0} \frac{\sin \left(\frac{2 x+h}{2}\right)}{\cos (x+h)} \cdot \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right]-4 \sin x \\
& =\frac{5}{\cos x} \cdot \frac{\sin x}{\cos x} \cdot 1-4 \sin x \\
& =5 \sec x \tan x .-4 \sin x
\end{aligned}
$$

(iv) Let $f(x)=\operatorname{cosec} x$. Accordingly, from the first principle,

Where You Get Complete Knowledge

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \cdot \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{-\cos \left(\frac{2 x+h}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}}{\sin (x+h) \sin x} \\
& =\lim _{h \rightarrow 0}\left(\frac{-\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h) \sin x}\right) \lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \\
& =\left(\frac{-\cos x}{\sin x \sin x}\right) \cdot 1 \\
& =-\operatorname{cosec} x \cot x
\end{aligned}
$$

(v) Let $f(x)=3 \cot x+5 \operatorname{cosec} x$. Accordingly, from the first principle,

Where You Get Complete Knowledge

$$
\begin{align*}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 \cot (x+h)+5 \operatorname{cosec}(x+h)-3 \cot x-5 \operatorname{cosec} x}{h} \\
& =3 \lim _{h \rightarrow 0} \frac{1}{h}[\cot (x+h)-\cot x]+5 \lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x] \tag{1}
\end{align*}
$$

Now, $\lim _{h \rightarrow 0} \frac{1}{h}[\cot (x+h)-\cot x]$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos (x+h)}{\sin (x+h)}-\frac{\cos x}{\sin x}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos (x+h) \sin x-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x-x-h)}{\sin x \sin (x+h)}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (-h)}{\sin x \sin (x+h)}\right]
$$

$$
=-\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\sin x \cdot \sin (x+h)}\right)
$$

$$
\begin{equation*}
=-1 \cdot \frac{1}{\sin x \cdot \sin (x+0)}=\frac{-1}{\sin ^{2} x}=-\operatorname{cosec}^{2} x \tag{2}
\end{equation*}
$$

Where You Get Complete Knowledge

$$
\begin{align*}
& \lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \cdot \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\sin (x+h) \sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{-\cos \left(\frac{2 x+h}{2}\right) \cdot \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}}{\sin (x+h) \sin x} \\
& =\lim _{h \rightarrow 0}\left(\frac{-\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h) \sin x}\right) \cdot \frac{\lim _{\frac{h}{2}}^{2} \rightarrow 0}{\sin \left(\frac{h}{2}\right)} \\
& =\left(\frac{-h}{2}\right) \\
& =(\sin x \sin x) \cdot 1 \tag{3}\\
& =-\operatorname{cosec} x \cot x
\end{align*}
$$

From (1), (2), and (3), we obtain
$f^{\prime}(x)=-3 \operatorname{cosec}^{2} x-5 \operatorname{cosec} x \cot x$
(vi) Let $f(x)=5 \sin x-6 \cos x+7$. Accordingly, from the first principle,

Where You Get Complete Knowledge

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[5 \sin (x+h)-6 \cos (x+h)+7-5 \sin x+6 \cos x-7] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[5\{\sin (x+h)-\sin x\}-6\{\cos (x+h)-\cos x\}] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}[\sin (x+h)-\sin x]-6 \lim _{h \rightarrow 0} \frac{1}{h}[\cos (x+h)-\cos x] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+x}{2}\right) \sin \left(\frac{x+h-x}{2}\right)\right]-6 \lim _{h \rightarrow 0} \frac{\cos x \cos h-\sin x \sin h-\cos x}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+h}{2}\right) \sin \frac{h}{2}\right]-6 \lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)-\sin x \sin h}{h}\right]
\end{aligned}
$$

$$
=5 \lim _{h \rightarrow 0}\left(\cos \left(\frac{2 x+h}{2}\right) \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)-6 \lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)}{h}-\frac{\sin x \sin h}{h}\right]
$$

$$
=5\left[\lim _{h \rightarrow 0} \cos \left(\frac{2 x+h}{2}\right)\right]\left[\lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right]-6\left[(-\cos x)\left(\lim _{h \rightarrow 0} \frac{1-\cos h}{h}\right)-\sin x \lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right)\right]
$$

$$
=5 \cos x \cdot 1-6[(-\cos x) \cdot(0)-\sin x \cdot 1]
$$

$$
=5 \cos x+6 \sin x
$$

(vii) Let $f(x)=2 \tan x-7 \sec x$. Accordingly, from the first principle,

Where You Get Complete Knowledge

$$
\left.\begin{array}{rl}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[2 \tan (x+h)-7 \sec (x+h)-2 \tan x+7 \sec x] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[2\{\tan (x+h)-\tan x\}-7\{\sec (x+h)-\sec x\}] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}[\tan (x+h)-\tan x]-7 \lim _{h \rightarrow 0} \frac{1}{h}[\sec (x+h)-\sec x] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac { \operatorname { s i n } (x + h) \operatorname { c o s } x - \operatorname { s i n } x \operatorname { c o s } (x + h) } { \operatorname { c o s } x \operatorname { c o s } (x + h) } \left[-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right]\right.\right. \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)\right] \\
& =2 \lim _{h \rightarrow 0}\left[\left(\frac{\sin h}{h}\right) \frac{1}{\cos x \cos x(x+h)}\right] \\
& =2\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)\left(\lim _{h \rightarrow 0} \frac{1}{\cos x(x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos x \cos (x+h)}\right)-7\left(\lim _{\frac{h}{h} \rightarrow 0}^{2} \frac{\frac{h}{2}}{2}\right)\left(\lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{\cos x \cos (x+h)}\right.}{2}\right) \\
& =2.1 \underbrace{\cos x \cos x}_{\cos }) \\
& =2 \sec 2 x-7 \sec x \tan x \\
\cos x \cos x
\end{array}\right)
$$

