EXERCISE:-15.1

Question 1:

Find the mean deviation about the mean for the data
$4,7,8,9,10,12,13,17$
The given data is
$4,7,8,9,10,12,13,17$
Mean of the data, $\quad \bar{x}=\frac{4+7+8+9+10+12+13+17}{8}=\frac{80}{8}=10$
The deviations of the respective observations from the mean \bar{x}, i.e. $x_{i}-\bar{x}$, are $-6,-3,-2,-1,0,2,3,7$

The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$, are
$6,3,2,1,0,2,3,7$
The required mean deviation about the mean is
M.D. $(\bar{x})=\frac{\sum_{i=1}^{8}\left|x_{i}-\bar{x}\right|}{8}=\frac{6+3+2+1+0+2+3+7}{8}=\frac{24}{8}=3$

Question 2:

Find the mean deviation about the mean for the data
$38,70,48,40,42,55,63,46,54,44$
The given data is
$38,70,48,40,42,55,63,46,54,44$
Mean of the given data,

Where You Get Complete Knowledge

$$
\bar{x}=\frac{38+70+48+40+42+55+63+46+54+44}{10}=\frac{500}{10}=50
$$

The deviations of the respective observations from the mean \bar{x}, i.e. $x_{i}-\bar{x}$, are $-12,20,-2,-10,-8,5,13,-4,4,-6$

The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$, are
$12,20,2,10,8,5,13,4,4,6$
The required mean deviation about the mean is

$$
\begin{aligned}
\text { M.D. }(\bar{x}) & =\frac{\sum_{i=1}^{10}\left|x_{i}-\bar{x}\right|}{10} \\
& =\frac{12+20+2+10+8+5+13+4+4+6}{10} \\
& =\frac{84}{10} \\
& =8.4
\end{aligned}
$$

Question 3:

Find the mean deviation about the median for the data.
$13,17,16,14,11,13,10,16,11,18,12,17$

The given data is
$13,17,16,14,11,13,10,16,11,18,12,17$

Here, the numbers of observations are 12, which is even.
Arranging the data in ascending order, we obtain
$10,11,11,12,13,13,14,16,16,17,17,18$

Where You Get Complete Knowledge
Median, $\mathrm{M}=\frac{\left(\frac{12}{2}\right)^{t h} \text { observation }+\left(\frac{12}{2}+1\right)^{t h} \text { observation }}{2}$

$$
\begin{aligned}
& =\frac{6^{\text {th }} \text { observation }+7^{\text {th }} \text { observation }}{2} \\
& =\frac{13+14}{2}=\frac{27}{2}=13.5
\end{aligned}
$$

The deviations of the respective observations from the median, i.e. $x_{i}-\mathrm{M}$, are $-3.5,-2.5,-2.5,-1.5,-0.5,-0.5,0.5,2.5,2.5,3.5,3.5,4.5$

The absolute values of the deviations, $\left|x_{i}-\mathrm{M}\right|$, are $3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$

The required mean deviation about the median is

$$
\begin{aligned}
\operatorname{M.D.}(\mathrm{M}) & =\frac{\sum_{i=1}^{12}\left|x_{i}-\mathrm{M}\right|}{12} \\
& =\frac{3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.5}{12} \\
& =\frac{28}{12}=2.33
\end{aligned}
$$

Question 4:

Find the mean deviation about the median for the data
$36,72,46,42,60,45,53,46,51,49$
The given data is
$36,72,46,42,60,45,53,46,51,49$
Here, the number of observations is 10 , which is even.
Arranging the data in ascending order, we obtain
$36,42,45,46,46,49,51,53,60,72$

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\text { Median } \begin{aligned}
\mathrm{M} & =\frac{\left(\frac{10}{2}\right)^{t h} \text { observation }+\left(\frac{10}{2}+1\right)^{t h} \text { observation }}{2} \\
& =\frac{5^{\text {th }} \text { observation }+6^{\text {th }} \text { observation }}{2} \\
& =\frac{46+49}{2}=\frac{95}{2}=47.5
\end{aligned}
$$

The deviations of the respective observations from the median, i.e. $x_{i}-\mathrm{M}$, are $-11.5,-5.5,-2.5,-1.5,-1.5,1.5,3.5,5.5,12.5,24.5$

The absolute values of the deviations, $\left|x_{i}-\mathrm{M}\right|$, are

$11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$

Thus, the required mean deviation about the median is

$$
\begin{aligned}
\operatorname{M.D}(\mathrm{M}) & =\frac{\sum_{i=1}^{10}\left|x_{i}-\mathrm{M}\right|}{10}=\frac{11.5+5.5+2.5+1.5+1.5+1.5+3.5+5.5+12.5+24.5}{10} \\
& =\frac{70}{10}=7
\end{aligned}
$$

Question 5:

Find the mean deviation about the mean for the data.

x_{i}	5	10	15	20	25	
f_{i}	7	4	6	3	5	

EDUCATION CENTRE
Where You Get Complete Knowledge

20	3	60	6	18
25	5	125	11	55
	25	350		158

$\mathrm{N}=\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}=25$
$\sum_{i=1}^{5} f_{i} x_{i}=350$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=\frac{1}{25} \times 350=14$
$\therefore \mathrm{MD}(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{25} \times 158=6.32$

Question 6:

Find the mean deviation about the mean for the data

x_{i}	10	30	$50 \quad 70$	90	
f_{i}	4	24	$28 \quad 16$	8	
	x_{i}	f_{i}	$f_{i} x_{i}$	$\left\|\mathbf{x}_{\text {i }}-\overline{\mathbf{x}}\right\|$	$\mathrm{f}_{\mathrm{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
	10	4	40	40	160
	30	24	720	20	480
	50	28	1400	0	0
	70	16	1120	20	320
	90	8	720	40	320
		80	4000		1280

$\mathrm{N}=\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}=80, \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=4000$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{80} \times 4000=50$
$\operatorname{MD}(\bar{x}) \frac{1}{N} \sum_{i=1}^{5} f_{i}\left|x_{i}-\bar{x}\right|=\frac{1}{80} \times 1280=16$
Question 7:

Find the mean deviation about the median for the data.

$\boldsymbol{x}_{\boldsymbol{i}}$	5	7	9	10	12	15
$\boldsymbol{f}_{\boldsymbol{i}}$	8	6	2	2	2	6

The given observations are already in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

\boldsymbol{x}_{i}	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{c}_{\mathrm{f}} . \boldsymbol{f}$.
5	8	8
7	6	14
9	2	16
10	2	18
12	2	20
15	6	26

Here, $\mathrm{N}=26$, which is even.
Median is the mean of $13^{\text {th }}$ and $14^{\text {th }}$ observations. Both of these observations lie in the cumulative frequency 14 , for which the corresponding observation is 7 .

Where You Get Complete Knowledge
\therefore Median $=\frac{13^{\text {th }} \text { observation }+14^{\text {th }} \text { observation }}{2}=\frac{7+7}{2}=7$
The absolute values of the deviations from median, i.e. $\left|x_{i}-\mathrm{M}\right|$, are

$\left\|\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{M}\right\|$	2	0	2	3	5	8
$\boldsymbol{f}_{\boldsymbol{i}}$	8	6	2	2	2	6
	16	0	4	6	10	48
$\boldsymbol{f}_{\boldsymbol{i}}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{M}\right\|$						

$$
\begin{aligned}
& \sum_{i=1}^{6} f_{i}=26 \sum_{\text {and }}^{6} f_{i=1}\left|x_{i}-\mathrm{M}\right|=84 \\
& \text { M.D.(M) }=\frac{1}{\mathrm{~N}} \sum_{i=1}^{6} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{26} \times 84=3.23
\end{aligned}
$$

Question 8:

Find the mean deviation about the median for the data

$\boldsymbol{x}_{\boldsymbol{i}}$	15	21	27	30	35
$\boldsymbol{f}_{\boldsymbol{i}}$	3	5	6	7	8

The given observations are already in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$c_{.} . f_{\cdot}$
15	3	3
21	5	8
27	6	14

Where You Get Complete Knowledge

30	7	21
35	8	29

Here, $\mathrm{N}=29$, which is odd.
\therefore Median $=\left(\frac{29+1}{2}\right)^{\text {th }}$ observation $=15^{\text {th }}$ observation

This observation lies in the cumulative frequency 21 , for which the corresponding observation is 30 .
\therefore Median $=30$
The absolute values of the deviations from median, i.e. $\left|x_{i}-\mathrm{M}\right|$, are

$\left\|\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{M}\right\|$	15	9	3	0	5
$\boldsymbol{f}_{\boldsymbol{i}}$	3	5	6	7	8
$\boldsymbol{f}_{\boldsymbol{i}}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{M}\right\|$	45	45	18	0	40

$\sum_{i=1}^{5} f_{i}=29, \sum_{i=1}^{5} f_{i}\left|x_{i}-\mathrm{M}\right|=148$
$\therefore \quad$ M.D.(M) $=\frac{1}{\mathrm{~N}} \sum_{i=1}^{5} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{29} \times 148=5.1$

Question 9:

Find the mean deviation about the mean for the data.

Income per day	Number of persons
$0-100$	4
$100-200$	8
$200-300$	9

EDUCATION CENTRE
Where You Get Complete Knowledge

$300-400$	10
$400-500$	7
$500-600$	5
$600-700$	4
$700-800$	3

The following table is formed.

Income per day	Number of persons $\boldsymbol{f}_{\boldsymbol{i}}$	Mid- point $\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
$0-100$	4	50	200	308	1232
$100-200$	8	150	1200	208	1664
$200-300$	9	250	2250	108	972
$300-400$	7	350	3500	8	80
$400-500$	5	450	3150	92	644
$500-600$	4	650	2750	192	960
$600-700$	3	750	2250	392	1176
$700-800$	50		17900		7896

Here, $N=\sum_{i=1}^{8} \mathrm{f}_{\mathrm{i}}=50, \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=17900$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{50} \times 17900=358$
M.D. $(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{50} \times 7896=157.92$

Where You Get Complete Knowledge

Question 10:

Find the mean deviation about the mean for the data

Height in cms	Number of boys
$95-105$	9
$105-115$	13
$115-125$	26
$125-135$	30
$135-145$	12
$145-155$	10

The following table is formed.

Height in cms	Number of boys $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
$95-105$	9	100	900	25.3	227.7
$105-115$	13	110	1430	15.3	198.9
$115-125$	26	120	3120	5.3	137.8
$125-135$	30	130	3900	4.7	141
$135-145$	10	140	1680	14.7	176.4
$145-155$			1500	24.7	247

Here, $N=\sum_{i=1}^{6} f_{i}=100, \sum_{i=1}^{6} f_{i} x_{i}=12530$

$$
\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{100} \times 12530=125.3
$$

$$
\text { M.D. }(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{100} \times 1128.8=11.28
$$

Question 11:

Find the mean deviation about median for the following data:

Marks	Number of girls
$0-10$	6
$10-20$	8
$20-30$	14
$30-40$	16
$40-50$	4
$50-60$	2

The following table is formed.

Marks	Number of boys \boldsymbol{f}_{i}	Cumulative frequency (c.f.)	Mid- point x_{i}	$\mid x_{i}-$ Med. \mid	$f_{i} \mid x_{i}-$ Med. \mid
$0-10$	6	6	5	22.85	137.1
$10-20$	8	14	15	12.85	102.8
$20-30$	14	28	25	2.85	39.9
$30-40$	16	44	35	7.15	114.4
$40-50$	4	48	45	17.15	68.6
$50-60$	2	50	55	27.15	54.3
	50				517.1

The class interval containing the $\left(\frac{\mathrm{N}}{2}\right)^{\text {th }}$ or $25^{\text {th }}$ item is $20-30$.
Therefore, $20-30$ is the median class.
It is known that,
Median $=l+\frac{\frac{\mathrm{N}}{2}-\mathrm{C}}{f} \times h$
Here, $l=20, \mathrm{C}=14, f=14, h=10$, and $\mathrm{N}=50$
\therefore Median $=20+\frac{25-14}{14} \times 10=20+\frac{110}{14}=20+7.85=27.85$
Thus, mean deviation about the median is given by,

$$
\text { M.D. }(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{6} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{50} \times 517.1=10.34
$$

Question 12:

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age	Number
$16-20$	5
$21-25$	6
$26-30$	12
$31-35$	14
$36-40$	26
$41-45$	12

EDUCATION CENTRE
Where You Get Complete Knowledge

$46-50$	16
$51-55$	9

The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.

The table is formed as follows.

Age	Number f_{i}	Cumulative frequency (c.f.)	Midpointx ${ }_{i}$	$\mid x_{i}-$ Med.	$f_{i} \mid x_{i}-$ Med.
$\begin{aligned} & 15.5- \\ & 20.5 \end{aligned}$	5	5	18	20	100
$\begin{gathered} 20.5- \\ 25.5 \end{gathered}$	6	11	23	15	90
$\begin{gathered} 25.5- \\ 30.5 \end{gathered}$	12	23	28	10	120
$\begin{aligned} & 30.5- \\ & 35.5 \end{aligned}$	14	37	33	5	70
$\begin{gathered} 35.5- \\ 40.5 \end{gathered}$	26	63	38	0	0
$\begin{gathered} 40.5- \\ 45.5 \end{gathered}$	12	75	43	5	60
$\begin{gathered} 45.5- \\ 50.5 \end{gathered}$	16	91	48	10	160
$\begin{gathered} 50.5- \\ 55.5 \end{gathered}$	9	100	53	15	135
	100				735

EDUCATION CENTRE
 Where You Get Complete Knowledge

The class interval containing the $\frac{\mathrm{N}^{\text {th }}}{2}$ or 50^{h} item is $35.5-40.5$.
Therefore, $35.5-40.5$ is the median class.
It is known that,
Median $=l+\frac{\frac{\mathrm{N}}{2}-\mathrm{C}}{f} \times h$
Here, $l=35.5, \mathrm{C}=37, f=26, h=5$, and $\mathrm{N}=100$
\therefore Median $=35.5+\frac{50-37}{26} \times 5=35.5+\frac{13 \times 5}{26}=35.5+2.5=38$

Thus, mean deviation about the median is given by,
M.D.(M) $=\frac{1}{\mathrm{~N}} \sum_{i=1}^{8} f_{i}\left|x_{i}-\mathrm{M}\right|=\frac{1}{100} \times 735=7.35$

EXERCISE:-15.2

Question 1:

Find the mean and variance for the data $6,7,10,12,13,4,8,12$
$6,7,10,12,13,4,8,12$

Mean,

$$
\bar{x}=\frac{\sum_{i=1}^{8} x_{i}}{n}=\frac{6+7+10+12+13+4+8+12}{8}=\frac{72}{8}=9
$$

The following table is obtained.

$\boldsymbol{x}_{\boldsymbol{i}}$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
6	-3	9

Where You Get Complete Knowledge

7	-2	4
10	-1	1
12	3	9
13	4	16
4	-5	25
8	-1	1
12	3	9
		74

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{8}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{8} \times 74=9.25$

Question 2:

Find the mean and variance for the first n natural numbers

The mean of first n natural numbers is calculated as follows.
Mean $=\frac{\text { Sum of all observations }}{\text { Number of observations }}$

EDUCATION CENTRE

Where You Get Complete Knowledge
\therefore Mean $=\frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2}$
Variance $\left(\sigma^{2}\right)=\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\mathrm{x}_{\mathrm{i}}-\left(\frac{\mathrm{n}+1}{2}\right)\right]^{2} \\
& =\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{2}-\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} 2\left(\frac{\mathrm{n}+1}{2}\right) \mathrm{x}_{\mathrm{i}}+\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\frac{\mathrm{n}+1}{2}\right)^{2} \\
& =\frac{1}{\mathrm{n}} \frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}-\left(\frac{\mathrm{n}+1}{\mathrm{n}}\right)\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]+\frac{(\mathrm{n}+1)^{2}}{4 \mathrm{n}} \times \mathrm{n} \\
& =\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}-\frac{(\mathrm{n}+1)^{2}}{2}+\frac{(\mathrm{n}+1)^{2}}{4} \\
& =\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}-\frac{(\mathrm{n}+1)^{2}}{4} \\
& =(\mathrm{n}+1)\left[\frac{4 \mathrm{n}+2-3 \mathrm{n}-3}{12}\right] \\
& =\frac{(\mathrm{n}+1)(\mathrm{n}-1)}{12} \\
& =\frac{\mathrm{n}^{2}-1}{12}
\end{aligned}
$$

Question 3:

Find the mean and variance for the first 10 multiples of 3

The first 10 multiples of 3 are
$3,6,9,12,15,18,21,24,27,30$

Here, number of observations, $n=10$
Mean, $\bar{x}=\frac{\sum_{i=1}^{10} x_{i}}{10}=\frac{165}{10}=16.5$
The following table is obtained.

EDUCATION CENTRE

Where You Get Complete Knowledge

x_{i}	$\left(x_{i}-\overline{\mathrm{x}}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
3	-13.5	182.25
6	-10.5	110.25
9	-7.5	56.25
12	-4.5	20.25
15	-1.5	2.25
18	1.5	2.25
21	4.5	20.25
24	7.5	56.25
27	10.5	110.25
30	13.5	182.25
		742.5

$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{10} \times 742.5=74.25$

Question 4:

Find the mean and variance for the data

EDUCATION CENTRE
Where You Get Complete Knowledge

6	2	12	-13	169	338
10	4	40	-9	81	324
14	7	98	-5	25	175
18	12	216	-1	1	12
24	8	192	5	25	200
28	4	112	9	81	324
30	3	90	11	121	363
	40	760			1736

Here, $\mathrm{N}=40, \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=760$
$\therefore \bar{x}=\frac{\sum_{i=1}^{7} f_{i} x_{i}}{N}=\frac{760}{40}=19$
Variance $=\left(\sigma^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{40} \times 1736=43.4$

Question 5:

Find the mean and variance for the data

EDUCATION CENTRE
Where You Get Complete Knowledge

98	2	196	-2	4	8
102	6	612	2	4	24
104	3	312	4	16	48
109	3	327	9	81	243
	22	2200			640

Here, $\mathrm{N}=22, \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=2200$

$$
\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{22} \times 2200=100
$$

$$
\operatorname{Variance}\left(\sigma^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{22} \times 640=29.09
$$

Question 6:

Find the mean and standard deviation using short-cut method.

x_{i}	60	61	62	63	64	65	66	67	68
f_{i}	2	1	12	29	25	12	10	4	5

The data is obtained in tabular form as follows.

\boldsymbol{x}_{i}	f_{i}	$\mathrm{f}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-64}{1}$	\boldsymbol{y}_{i}^{2}	$\boldsymbol{f}_{\boldsymbol{y}_{i}}$	$\boldsymbol{f}_{i} \boldsymbol{y}_{i}{ }^{2}$
60	2	-4	16	-8	32
61	1	-3	9	-3	9
62	12	-2	4	-24	48
63	29	-1	1	-29	29

EDUCATION CENTRE
Where You Get Complete Knowledge

64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	36
68	5	4	16	20	80
	100	220		0	286

Mean, $\quad \overline{\mathrm{x}}=\mathrm{A} \frac{\sum_{\mathrm{i}=1}^{9} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=64+\frac{0}{100} \times \mathrm{l}=64+0=64$
Variance,$\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{9} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{9} f_{i} y_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{1}{100^{2}}[100 \times 286-0] \\
& =2.86
\end{aligned}
$$

$\therefore S \tan$ dard deviation $(\sigma)=\sqrt{2.86}=1.69$

Question 7:

Find the mean and variance for the following frequency distribution.

| Classes | $0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $150-180$ | $180-210$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequencies | 2 | 3 | 5 | 10 | 3 | 5 | 2 |
| Class | Frequency f_{i} | Mid-pointx x_{i} | $y_{i}=\frac{x_{i}-105}{30}$ | y_{i}^{2} | $f_{\boldsymbol{y}_{i}}$ | $f_{\boldsymbol{v}_{i}^{2}}$ | |
| $0-30$ | 2 | 15 | -3 | 9 | -6 | 18 | |
| $30-60$ | 3 | 45 | -2 | 4 | -6 | 12 | |
| $60-90$ | 5 | 75 | -1 | 1 | -5 | 5 | |

EDUCATION CENTRE
Where You Get Complete Knowledge

$90-120$	10	105	0	0	0	0
$120-150$	3	135	1	1	3	3
$150-180$	5	165	2	4	10	20
$180-210$	2	195	3	9	6	18
	30				2	76

Mean, $\quad \overline{\mathrm{x}}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=105+\frac{2}{30} \times 30=105+2=107$

$$
\begin{aligned}
\operatorname{Variance}\left(\sigma^{2}\right) & =\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{7} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{7} f_{i} y_{i}\right)^{2}\right] \\
& =\frac{(30)^{2}}{(30)^{2}}\left[30 \times 76-(2)^{2}\right] \\
& =2280-4 \\
& =2276
\end{aligned}
$$

Question 8:

Find the mean and variance for the following frequency distribution.

Classes	0-10	10-20	20-30	30-40	40-50							
Frequencies	5	8	15	16	6	Cl as s	Freq uenc y f_{i}	Mi d- poi nt x_{i}	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-y}{1^{i^{2}}}$		$f_{i}$$y$$i$	$f_{i}$$y_{i}$2
						$\begin{aligned} & 0- \\ & 10 \end{aligned}$	5	5	-2	4	- 1 0	2 0
						10	8	15	-1	1	-	8

$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline 20 & & & & & & \\ \hline \begin{array}{c}20 \\ - \\ 30\end{array} & 15 & 25 & 0 & 0 & 0 & 0 \\ \hline \begin{array}{c}30 \\ - \\ 40\end{array} & 16 & 35 & 1 & 1 & 1 & 1 \\ \hline 40 & 6 & 45 & 2 & 4 & 1 & 2 \\ - \\ - \\ 50\end{array}\right]$

Mean, $\quad \overline{\mathrm{x}}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}=25+\frac{10}{50} \times 10=25+2=27$

$$
\begin{aligned}
\operatorname{Variance}\left(\sigma^{2}\right) & =\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right] \\
& =\frac{(10)^{2}}{(50)^{2}}\left[50 \times 68-(10)^{2}\right] \\
& =\frac{1}{25}[3400-100]=\frac{3300}{25} \\
& =132
\end{aligned}
$$

Question 9:
Find the mean, variance and standard deviation using short-cut method

Height in cms	No. of children
$70-75$	3

	Where You Get Complete Knowledge					
75-80	4					
80-85	7					
85-90	7					
90-95	15					
95-100	9					
100-105	6					
105-110	6					
110-115	3					
Class Interval	Frequency f_{i}	Mid-pointx ${ }_{\text {i }}$	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-92.5}{5}$	$y_{i}{ }^{2}$	$f_{i} y_{i}$	$f_{i} y_{i}{ }^{2}$
70-75	3	72.5	-4	16	-12	48
75-80	4	77.5	-3	9	-12	36
80-85	7	82.5	-2	4	-14	28
85-90	7	87.5	-1	1	-7	7
90-95	15	92.5	0	0	0	0
95-100	9	97.5	1	1	9	9
100-105	6	102.5	2	4	12	24
105-110	6	107.5	3	9	18	54
110-115	3	112.5	4	16	12	48
	60				6	254
Mean,$\bar{x}=A+\frac{\sum_{i=1}^{9} f_{i} y_{i}}{N} \times h=92.5+\frac{6}{60} \times 5=92.5+0.5=93$						

EDUCATION CENTRE

Where You Get Complete Knowledge
$\operatorname{Variance}\left(\sigma^{2}\right)=\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{9} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{9} f_{i} y_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{(5)^{2}}{(60)^{2}}\left[60 \times 254-(6)^{2}\right] \\
& =\frac{25}{3600}(15204)=105.58
\end{aligned}
$$

$\therefore \mathrm{Stan}$ dard deviation $(\sigma)=\sqrt{105.58}=10.27$

Question 10:

The diameters of circles (in mm) drawn in a design are given below:

Diameters	No. of children							
33-36	15	Class Interva I	Frequency f_{i}	Mid- point \boldsymbol{x}_{i}	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-42.5}{4}$	f_{i}	$f_{i} \mathrm{y}$	$f_{i} y_{i}^{2}$
37-40	17							
41-44	21	$\begin{gathered} 32.5- \\ 36.5 \end{gathered}$	15	34.5	-2	4	$\begin{aligned} & - \\ & 3 \\ & 0 \end{aligned}$	60
45-48	22							
49-52	25	$\begin{gathered} 36.5- \\ 40.5 \end{gathered}$	17	38.5	-1	1	-17	17
		$\begin{gathered} 40.5- \\ 44.5 \end{gathered}$	21	42.5	0	0	0	0
		$\begin{aligned} & 44.5- \\ & 48.5 \end{aligned}$	22	46.5	1	1	2	22
		$\begin{gathered} 48.5- \\ 52.5 \end{gathered}$	25	50.5	2	4	5 0	10 0
			100				2	19 9

Here, $\mathrm{N}=100, h=4$

EDUCATION CENTRE

Where You Get Complete Knowledge
Let the assumed mean, A, be 42.5 .

Mean, $\quad \bar{x}=A+\frac{\sum_{i=1}^{5} f_{i} y_{i}}{N} \times h=42.5+\frac{25}{100} \times 4=43.5$

$$
\begin{aligned}
\operatorname{Variance}\left(\sigma^{2}\right) & =\frac{h^{2}}{N^{2}}\left[N \sum_{i=1}^{5} f_{i} y_{i}{ }^{2}-\left(\sum_{i=1}^{5} f_{i} y_{i}\right)^{2}\right] \\
& =\frac{16}{10000}\left[100 \times 199-(25)^{2}\right] \\
& =\frac{16}{10000}[19900-625] \\
& =\frac{16}{10000} \times 19275 \\
& =30.84
\end{aligned}
$$

$\therefore \mathrm{Stan}$ dard deviation $(\sigma)=5.55$

EXERCISE:-15.3

Question 1:

From the data given below state which group is more variable, A or B?

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Firstly, the standard deviation of group A is calculated as follows.

Marks	Group A $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-45}{10}$	$\boldsymbol{y}_{\boldsymbol{i}}^{2}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$
$10-20$	9	15	-3	9	-27	81
$20-30$	17	25	-2	4	-34	68

EDUCATION CENTRE

Where You Get Complete Knowledge

$30-40$	32	35	-1	1	-32	32
$40-50$	33	45	0	0	0	0
$50-60$	40	55	1	1	40	40
$60-70$	10	65	2	4	20	40
$70-80$	9	75	3	9	27	81
	150				-6	342

Here, $h=10, \mathrm{~N}=150, \mathrm{~A}=45$

$$
\begin{aligned}
& \text { Mean }=A+\frac{\sum_{i=1}^{7} x_{i}}{N} \times h=45+\frac{(-6) \times 10}{150}=45-0.4=44.6 \\
& \begin{aligned}
\sigma_{1}^{2} & =\frac{h^{2}}{N^{2}}\left(N \sum_{i=1}^{7} f_{i} y_{i}^{2}-\left(\sum_{i=1}^{7} f_{i} y_{i}\right)^{2}\right) \\
& =\frac{100}{22500}\left(150 \times 342-(-6)^{2}\right) \\
& =\frac{1}{225}(51264) \\
& =227.84
\end{aligned}
\end{aligned}
$$

\therefore Stan dard deviation $\left(\sigma_{1}\right)=\sqrt{227.84}=15.09$

The standard deviation of group B is calculated as follows.

Marks	Group B $\boldsymbol{f}_{\boldsymbol{i}}$	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-45}{10}$	$\boldsymbol{y}_{\boldsymbol{i}}^{2}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{i}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{y}_{i}^{2}$
$10-20$	10	15	-3	9	-30	90
$20-30$	20	25	-2	4	-40	80
$30-40$	30	35	-1	1	-30	30
$40-50$	25	45	0	0	0	0

EDUCATION CENTRE
Where You Get Complete Knowledge
$50-60$
43

$$
\text { Mean }=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{~N}} \times \mathrm{h}=45+\frac{(-6) \times 10}{150}=45-0.4=44.6
$$

$$
\sigma_{2}^{2}=\frac{h^{2}}{N^{2}}\left[\mathrm{~N} \sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\left(\sum_{\mathrm{i}=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]
$$

$$
=\frac{100}{22500}\left[150 \times 366-(-6)^{2}\right]
$$

$$
=\frac{1}{225}[54864]=243.84
$$

$\therefore S$ tan dard deviation $\left(\sigma_{2}\right)=\sqrt{243.84}=15.61$
Since the mean of both the groups is same, the group with greater standard deviation will be more variable.

Thus, group B has more variability in the marks.

Question 2:

From the prices of shares X and Y below, find out which is more stable in value:

X	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

The prices of the shares X are
$35,54,52,53,56,58,52,50,51,49$

Here, the number of observations, $\mathrm{N}=10$

EDUCATION CENTRE

Where You Get Complete Knowledge
\therefore Mean, $\overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{10} \mathrm{x}_{\mathrm{i}}=\frac{1}{10} \times 510=51$

The following table is obtained corresponding to shares X .

x_{i}	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
35	-16	256
54	3	9
52	1	1
53	2	4
56	5	25
58	7	49
52	1	1
50	-1	1
51	0	0
49	-2	4
		350

$\operatorname{Variance}\left(\sigma_{1}^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{10}(\mathrm{xi}-\overline{\mathrm{x}})^{2}=\frac{1}{10} \times 350=35$
$\therefore S$ tan dard deviation $\left(\sigma_{1}\right)=\sqrt{35}=5.91$
C.V. $($ Shares X$)=\frac{\sigma_{1}}{\mathrm{x}} \times 100=\frac{5.91}{51} \times 100=11.58$

The prices of share Y are
$108,107,105,105,106,107,104,103,104,101$
\therefore Mean, $\overline{\mathrm{y}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{10} \mathrm{y}_{\mathrm{i}}=\frac{1}{10} \times 1050=105$

Where You Get Complete Knowledge
The following table is obtained corresponding to shares Y.

y_{i}	$\left(y_{i}-\bar{y}\right)$	$\left(y_{i}-\bar{y}\right)^{2}$
108	3	9
107	2	4
105	0	0
105	0	0
106	1	1
107	2	4
104	-1	1
103	-2	4
104	-1	1
101	-4	16
		40

$\operatorname{Variance}\left(\sigma_{2}^{2}\right)=\frac{1}{N} \sum_{\mathrm{i}=1}^{10}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}=\frac{1}{10} \times 40=4$
\therefore Stan dard deviation $\left(\sigma_{2}\right)=\sqrt{4}=2$
\therefore C.V. $($ Shares $Y)=\frac{\sigma_{2}}{\mathrm{y}} \times 100=\frac{2}{105} \times 100=1.9=11.58$
C.V. of prices of shares X is greater than the C.V. of prices of shares Y.

Thus, the prices of shares Y are more stable than the prices of shares X .

Question 3:

An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

Where You Get Complete Knowledge

	Firm A	Firm B
No. of wage earners	586	648
Mean of monthly wages	Rs 5253	Rs 5253
Variance of the distribution of wages	100	121

(i) Which firm A or B pays larger amount as monthly wages?
(ii) Which firm, A or B, shows greater variability in individual wages?
(i) Monthly wages of firm A = Rs 5253

Number of wage earners in firm $\mathrm{A}=586$
\therefore Total amount paid $=$ Rs 5253×586
Monthly wages of firm B = Rs 5253
Number of wage earners in firm B $=648$
\therefore Total amount paid $=$ Rs 5253×648
Thus, firm B pays the larger amount as monthly wages as the number of wage earners in firm B are more than the number of wage earners in firm A.
(ii) Variance of the distribution of wages in firm $\mathrm{A}\left(\sigma_{1}^{2}\right)=100$
\therefore Standard deviation of the distribution of wages in firm
$A\left(\left(\sigma_{1}\right)=\sqrt{100}=10\right.$
Variance of the distribution of wages in firm $\mathrm{B}\left(\sigma_{2}^{2}\right)=121$
\therefore Standard deviation of the distribution of wages in firm $\mathrm{B}\left(\sigma_{2}^{2}\right)=\sqrt{121}=11$
The mean of monthly wages of both the firms is same i.e., 5253. Therefore, the firm with greater standard deviation will have more variability.

Where You Get Complete Knowledge
Thus, firm B has greater variability in the individual wages.

Question 4:

The following is the record of goals scored by team A in a football session:

No. of goals scored	0	1	2	3	4
No. of matches	1	9	7	5	3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?

The mean and the standard deviation of goals scored by team A are calculated as follows.

No. of goals scored	No. of matches	$f_{\boldsymbol{x}} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}{ }^{2}$	$\boldsymbol{f}_{\boldsymbol{x}_{i}}$
0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
	25	50		130

$$
\text { Mean }=\frac{\sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}}=\frac{50}{25}=2
$$

Thus, the mean of both the teams is same.

$$
\begin{aligned}
\sigma & =\frac{1}{\mathrm{~N}} \sqrt{\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)^{2}} \\
& =\frac{1}{25} \sqrt{25 \times 130-(50)^{2}} \\
& =\frac{1}{25} \sqrt{750} \\
& =\frac{1}{25} \times 27.38 \\
& =1.09
\end{aligned}
$$

The standard deviation of team B is 1.25 goals.
The average number of goals scored by both the teams is same i.e., 2 . Therefore, the team with lower standard deviation will be more consistent.

Thus, team A is more consistent than team B.

Question 5:

The sum and sum of squares corresponding to length x (in cm) and weight y
(in gm) of 50 plant products are given below:

$$
\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}=212, \quad \sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}{ }^{2}=902.8, \quad \sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}=261, \quad \sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}^{2}=1457.6
$$

Which is more varying, the length or weight?

$$
\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}=212, \sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}{ }^{2}=902.8
$$

Here, $\mathrm{N}=50$
\therefore Mean, $\quad \bar{x}=\frac{\sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}}=\frac{212}{50}=4.24$

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
& \operatorname{Variance}\left(\sigma_{1}^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{50}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2} \\
&=\frac{1}{50} \sum_{\mathrm{i}=1}^{50}\left(\mathrm{x}_{\mathrm{i}}-4.24\right)^{2} \\
&=\frac{1}{50} \sum_{\mathrm{i}=1}^{50}\left[\mathrm{x}_{\mathrm{i}}^{2}-8.48 \mathrm{x}_{\mathrm{i}}+17.97\right] \\
&=\frac{1}{50}\left[\sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}^{2}-8.48 \sum_{\mathrm{i}=1}^{50} \mathrm{x}_{\mathrm{i}}+17.97 \times 50\right] \\
&=\frac{1}{50}[902.8-8.48 \times(212)+898.5] \\
&=\frac{1}{50}[1801.3-1797.76] \\
&=\frac{1}{50} \times 3.54 \\
&=0.07
\end{aligned}
$$

$\therefore \mathrm{Stan}$ dard deviation, σ_{1} (Length $)=\sqrt{0.07}=0.26$
\therefore C.V. $($ Length $)=\frac{S \tan \text { dard deviation }}{\text { Mean }} \times 100=\frac{0.26}{4.24} \times 100=6.13$
$\sum_{i=1}^{50} y_{i}=261, \sum_{i=1}^{50} y_{i}^{2}=1457.6$
Mean, $\quad \overline{\mathrm{y}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}=\frac{1}{50} \times 261=5.22$

Where You Get Complete Knowledge
$\operatorname{Variance}\left(\sigma_{2}^{2}\right)=\frac{1}{N} \sum_{i=1}^{30}\left(y_{i}-\bar{y}\right)^{2}$

$$
=\frac{1}{50} \sum_{i=1}^{50}\left(y_{i}-5.22\right)^{2}
$$

$$
=\frac{1}{50} \sum_{\mathrm{i}=1}^{50}\left[\mathrm{y}_{\mathrm{i}}{ }^{2}-10.44 \mathrm{y}_{\mathrm{i}}+27.24\right]
$$

$$
=\frac{1}{50}\left[\sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}^{2}-10.44 \sum_{\mathrm{i}=1}^{50} \mathrm{y}_{\mathrm{i}}+27.24 \times 50\right]
$$

$$
=\frac{1}{50}[1457.6-10.44 \times(261)+1362]
$$

$$
=\frac{1}{50}[2819.6-2724.84]
$$

$$
=\frac{1}{50} \times 94.76
$$

$$
=1.89
$$

$\therefore \mathrm{Stan}$ dard deviation, σ_{2} (Weight $)=\sqrt{1.89}=1.37$
\therefore C.V. $($ Weight $)=\frac{\text { Stan dard deviation }}{\text { Mean }} \times 100=\frac{1.37}{5.22} \times 100=26.24$
Thus, C.V. of weights is greater than the C.V. of lengths. Therefore, weights vary more than the lengths.

