Where You Get Complete Knowledge

EXERCISE- 3.1

Question 1:

Find the radian measures corresponding to the following degree measures:
(i) 25° (ii) $-47^{\circ} 30^{\prime}$ (iii) 240° (iv) 520°
(i) 25°

We know that $180^{\circ}=\pi$ radian
$\therefore 25^{\circ}=\frac{\pi}{180} \times 25$ radian $=\frac{5 \pi}{36}$ radian
(ii) $-47^{\circ} 30^{\prime}$
$-47^{\circ} 30^{\prime}=-47 \frac{1}{2}$ degree $\left[1^{\circ}=60^{\prime}\right]$
$=\frac{-95}{2}$ degree

Since $180^{\circ}=\pi$ radian
$\frac{-95}{2}$ deg ree $=\frac{\pi}{180} \times\left(\frac{-95}{2}\right)$ radian $=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian
$\therefore-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi$ radian
(iii) 240°

We know that $180^{\circ}=\pi$ radian
$\therefore 240^{\circ}=\frac{\pi}{180} \times 240$ radian $=\frac{4}{3} \pi$ radian
(iv) 520°

We know that $180^{\circ}=\pi$ radian
$\therefore 520^{\circ}=\frac{\pi}{180} \times 520$ radian $=\frac{26 \pi}{9}$ radian

Question 2:

Find the degree measures corresponding to the following radian measures
$\left(\right.$ Use $\left.\pi=\frac{22}{7}\right)$.
(i) $\frac{11}{16}$ (ii) - 4 (iii) $\frac{5 \pi}{3}$ (iv) $\frac{7 \pi}{6}$
(i) $\frac{11}{16}$

We know that π radian $=180^{\circ}$

$$
\begin{aligned}
\therefore \frac{11}{16} \text { radain } & =\frac{180}{\pi} \times \frac{11}{16} \text { deg ree }=\frac{45 \times 11}{\pi \times 4} \text { deg ree } \\
& =\frac{45 \times 11 \times 7}{22 \times 4} \text { deg ree }=\frac{315}{8} \text { deg ree } \\
& =39 \frac{3}{8} \text { deg ree } \\
& =39^{\circ}+\frac{3 \times 60}{8} \text { min utes } \quad\left[1^{\circ}=60^{\prime}\right] \\
& =39^{\circ}+22^{\prime}+\frac{1}{2} \text { min utes } \\
& =39^{\circ} 22^{\prime} 30^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]
\end{aligned}
$$

(ii) -4

We know that π radian $=180^{\circ}$

$$
\begin{aligned}
-4 \text { radian } & =\frac{180}{\pi} \times(-4) \text { deg ree }=\frac{180 \times 7(-4)}{22} \text { deg ree } \\
& =\frac{-2520}{11} \text { deg ree }=-229 \frac{1}{11} \text { deg ree } \\
& =-229^{\circ}+\frac{1 \times 60}{11} \text { min utes } \quad\left[1^{\circ}=60^{\prime}\right] \\
& =-229^{\circ}+5^{\prime}+\frac{5}{11} \text { min utes } \\
& =-229^{\circ} 5^{\prime} 27^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]
\end{aligned}
$$

(iii) $\frac{5 \pi}{3}$

We know that π radian $=180^{\circ}$
$\therefore \frac{5 \pi}{3}$ radian $=\frac{180}{\pi} \times \frac{5 \pi}{3}$ deg ree $=300^{\circ}$
(iv) $\frac{7 \pi}{6}$

We know that π radian $=180^{\circ}$
$\therefore \frac{7 \pi}{6}$ radian $=\frac{180}{\pi} \times \frac{7 \pi}{6}=210^{\circ}$

Question 3:

A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Number of revolutions made by the wheel in 1 minute $=360$
\therefore Number of revolutions made by the wheel in 1 second $=\frac{\frac{360}{60}=6}{}=6$
In one complete revolution, the wheel turns an angle of 2π radian.
Hence, in 6 complete revolutions, it will turn an angle of $6 \times 2 \pi$ radian, i.e.,
12π radian

Thus, in one second, the wheel turns an angle of 12π radian.

Question 4:

Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm
by an arc of length $22 \mathrm{~cm}\left(\right.$ Use $\left.\pi=\frac{22}{7}\right)$.
We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then

$$
\theta=\frac{1}{r}
$$

Therefore, forr $=100 \mathrm{~cm}, 1=22 \mathrm{~cm}$, we have

$$
\begin{aligned}
\theta & =\frac{22}{100} \text { radian }=\frac{180}{\pi} \times \frac{22}{100} \text { deg ree }=\frac{180 \times 7 \times 22}{22 \times 100} \text { deg ree } \\
& =\frac{126}{10} \text { deg ree }=12 \frac{3}{5} \text { deg ree }=12^{\circ} 36^{\prime} \quad\left[1^{\circ}=60^{\prime}\right]
\end{aligned}
$$

Thus, the required angle is $12^{\circ} 36^{\prime}$.

Question 5:

In a circle of diameter 40 cm , the length of a chord is 20 cm . Find the length of minor arc of the chord.

Diameter of the circle $=40 \mathrm{~cm}$
\therefore Radius (r) of the circle $=\frac{40}{2} \mathrm{~cm}=20 \mathrm{~cm}$

Let AB be a chord (length $=20 \mathrm{~cm}$) of the circle.

In $\triangle \mathrm{OAB}, \mathrm{OA}=\mathrm{OB}=$ Radius of circle $=20 \mathrm{~cm}$

Also, $\mathrm{AB}=20 \mathrm{~cm}$

Thus, $\triangle \mathrm{OAB}$ is an equilateral triangle.
$\therefore \theta=60^{\circ}=\frac{\pi}{3}$ radian

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then $\theta=\frac{l}{r}$.

$$
\frac{\pi}{3}=\frac{\overparen{\mathrm{AB}}}{20} \Rightarrow \overparen{\mathrm{AB}}=\frac{20 \pi}{3} \mathrm{~cm}
$$

Thus, the length of the minor arc of the chord is $\frac{20 \pi}{3} \mathrm{~cm}$.

Question 6:

If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Let the radii of the two circles be r_{1} and $r^{r_{2}}$. Let an arc of length l subtend an angle of 60° at the centre of the circle of radius r_{1}, while let an arc of length l subtend an angle of 75° at the centre of the circle of radius r_{2}.

Now, $60^{\circ}=\frac{\pi}{3}$ radian and $75^{\circ}=\frac{5 \pi}{12}$ radian

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then $\theta=\frac{l}{r}$ or $l=r \theta$.

Where You Get Complete Knowledge

$\therefore l=\frac{r_{1} \pi}{3}$ and $l=\frac{r_{2} 5 \pi}{12}$
$\Rightarrow \frac{r_{1} \pi}{3}=\frac{r_{2} 5 \pi}{12}$
$\Rightarrow r_{1}=\frac{r_{2} 5}{4}$
$\Rightarrow \frac{r_{1}}{r_{2}}=\frac{5}{4}$

Thus, the ratio of the radii is $5: 4$.

Question 7:

Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm (ii) 15 cm (iii) 21 cm

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then $\theta=\frac{l}{r}$.

It is given that $r=75 \mathrm{~cm}$
(i) Here, $l=10 \mathrm{~cm}$
$\theta=\frac{10}{75}$ radian $=\frac{2}{15}$ radian
(ii) Here, $l=15 \mathrm{~cm}$
$\theta=\frac{15}{75}$ radian $=\frac{1}{5}$ radian
(iii) Here, $l=21 \mathrm{~cm}$
$\theta=\frac{21}{75}$ radian $=\frac{7}{25}$ radian

Question 1:

Find the values of other five trigonometric functions if $\cos x=-\frac{1}{2}, x$ lies in third quadrant.
$\cos x=-\frac{1}{2}$
$\therefore \sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{1}{2}\right)}=-2$
$\sin ^{2} x+\cos ^{2} x=1$
$\Rightarrow \sin ^{2} x=1-\cos ^{2} x$
$\Rightarrow \sin ^{2} x=1-\left(-\frac{1}{2}\right)^{2}$
$\Rightarrow \sin ^{2} x=1-\frac{1}{4}=\frac{3}{4}$
$\Rightarrow \sin x= \pm \frac{\sqrt{3}}{2}$

Since x lies in the $3^{\text {rd }}$ quadrant, the value of $\sin x$ will be negative.
$\therefore \sin x=-\frac{\sqrt{3}}{2}$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{\sqrt{3}}{2}\right)}=-\frac{2}{\sqrt{3}}$
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(-\frac{1}{2}\right)}=\sqrt{3}$
$\cot x=\frac{1}{\tan x}=\frac{1}{\sqrt{3}}$

Question 2:

Find the values of other five trigonometric functions if $\sin x=\frac{3}{5}, x$ lies in second quadrant.
$\sin x=\frac{3}{5}$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(\frac{3}{5}\right)}=\frac{5}{3}$
$\sin ^{2} x+\cos ^{2} x=1$
$\Rightarrow \cos ^{2} x=1-\sin ^{2} x$
$\Rightarrow \cos ^{2} x=1-\left(\frac{3}{5}\right)^{2}$
$\Rightarrow \cos ^{2} x=1-\frac{9}{25}$
$\Rightarrow \cos ^{2} x=\frac{16}{25}$
$\Rightarrow \cos x= \pm \frac{4}{5}$

Since x lies in the $2^{\text {nd }}$ quadrant, the value of $\cos x$ will be negative
$\therefore \cos x=-\frac{4}{5}$
$\sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{4}{5}\right)}=-\frac{5}{4}$
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)}=-\frac{3}{4}$
$\cot x=\frac{1}{\tan x}=-\frac{4}{3}$

Question 3:

Find the values of other five trigonometric functions if $\cot x=\frac{3}{4}, x$ lies in third quadrant.
$\cot x=\frac{3}{4}$
$\tan x=\frac{1}{\cot x}=\frac{1}{\left(\frac{3}{4}\right)}=\frac{4}{3}$
$1+\tan ^{2} x=\sec ^{2} x$
$\Rightarrow 1+\left(\frac{4}{3}\right)^{2}=\sec ^{2} x$
$\Rightarrow 1+\frac{16}{9}=\sec ^{2} x$
$\Rightarrow \frac{25}{9}=\sec ^{2} x$
$\Rightarrow \sec x= \pm \frac{5}{3}$
Since x lies in the $3^{\text {rd }}$ quadrant, the value of $\sec x$ will be negative.
$\therefore \sec x=-\frac{5}{3}$
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(-\frac{5}{3}\right)}=-\frac{3}{5}$
$\tan x=\frac{\sin x}{\cos x}$
$\Rightarrow \frac{4}{3}=\frac{\sin x}{\left(\frac{-3}{5}\right)}$
$\Rightarrow \sin x=\left(\frac{4}{3}\right) \times\left(\frac{-3}{5}\right)=-\frac{4}{5}$
$\operatorname{cosec} x=\frac{1}{\sin x}=-\frac{5}{4}$

EDUCATION CENTRE
 Where You Get Complete Knowledge

Question 4:

Find the values of other five trigonometric functions if $\sec x=\frac{13}{5}, x$ lies in fourth quadrant.
$\sec x=\frac{13}{5}$
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(\frac{13}{5}\right)}=\frac{5}{13}$
$\sin ^{2} x+\cos ^{2} x=1$
$\Rightarrow \sin ^{2} x=1-\cos ^{2} x$
$\Rightarrow \sin ^{2} x=1-\left(\frac{5}{13}\right)^{2}$
$\Rightarrow \sin ^{2} x=1-\frac{25}{169}=\frac{144}{169}$
$\Rightarrow \sin x= \pm \frac{12}{13}$

Since x lies in the $4^{\text {th }}$ quadrant, the value of $\sin x$ will be negative.
$\therefore \sin x=-\frac{12}{13}$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{12}{13}\right)}=-\frac{13}{12}$
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{-12}{13}\right)}{\left(\frac{5}{13}\right)}=-\frac{12}{5}$
$\cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{12}{5}\right)}=-\frac{5}{12}$

Question 5:

Find the values of other five trigonometric functions if $\tan x=-\frac{5}{12}^{\tan } x$ lies in second quadrant.

$$
\begin{aligned}
& \tan x=-\frac{5}{12} \\
& \cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{5}{12}\right)}=-\frac{12}{5} \\
& 1+\tan ^{2} x=\sec ^{2} x \\
& \Rightarrow 1+\left(-\frac{5}{12}\right)^{2}=\sec ^{2} x \\
& \Rightarrow 1+\frac{25}{144}=\sec ^{2} x \\
& \Rightarrow \frac{169}{144}=\sec ^{2} x \\
& \Rightarrow \sec x= \pm \frac{13}{12}
\end{aligned}
$$

Since x lies in the $2^{\text {nd }}$ quadrant, the value of $\sec x$ will be negative.
$\therefore \sec x=-\frac{13}{12}$
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(-\frac{13}{12}\right)}=-\frac{12}{13}$
$\tan x=\frac{\sin x}{\cos x}$
$\Rightarrow-\frac{5}{12}=\frac{\sin x}{\left(-\frac{12}{13}\right)}$
$\Rightarrow \sin x=\left(-\frac{5}{12}\right) \times\left(-\frac{12}{13}\right)=\frac{5}{13}$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(\frac{5}{13}\right)}=\frac{13}{5}$

Question 6:

Find the value of the trigonometric function $\sin 765^{\circ}$

It is known that the values of $\sin x$ repeat after an interval of 2π or 360°.
$\therefore \sin 765^{\circ}=\sin \left(2 \times 360^{\circ}+45^{\circ}\right)=\sin 45^{\circ}=\frac{1}{\sqrt{2}}$

Question 7:

Find the value of the trigonometric function $\operatorname{cosec}\left(-1410^{\circ}\right)$
It is known that the values of $\operatorname{cosec} x$ repeat after an interval of 2π or 360°.

$$
\begin{aligned}
\therefore \operatorname{cosec}\left(-1410^{\circ}\right) & =\operatorname{cosec}\left(-1410^{\circ}+4 \times 360^{\circ}\right) \\
& =\operatorname{cosec}\left(-1410^{\circ}+1440^{\circ}\right) \\
& =\operatorname{cosec} 30^{\circ}=2
\end{aligned}
$$

Question 8:

Find the value of the trigonometric function $\tan \frac{19 \pi}{3}$

It is known that the values of $\tan x$ repeat after an interval of π or 180°.
$\therefore \tan \frac{19 \pi}{3}=\tan 6 \frac{1}{3} \pi=\tan \left(6 \pi+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}=\tan 60^{\circ}=\sqrt{3}$

Question 9:

Find the value of the trigonometric function $\sin \left(-\frac{11 \pi}{3}\right)$
It is known that the values of $\sin x$ repeat after an interval of 2π or 360°.
$\therefore \sin \left(-\frac{11 \pi}{3}\right)=\sin \left(-\frac{11 \pi}{3}+2 \times 2 \pi\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$

EDUCATION CENTRE
 Where You Get Complete Knowledge

Find the value of the trigonometric function $\cot \left(-\frac{15 \pi}{4}\right)$
It is known that the values of $\cot x$ repeat after an interval of π or 180°.
$\therefore \cot \left(-\frac{15 \pi}{4}\right)=\cot \left(-\frac{15 \pi}{4}+4 \pi\right)=\cot \frac{\pi}{4}=1$

EXERCISE- 3.3

Question 1:

$\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}$
L.H.S. $=\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}$
$=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}-(1)^{2}$
$=\frac{1}{4}+\frac{1}{4}-1=-\frac{1}{2}$
= R.H.S.

Question 2:

Prove that $2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}=\frac{3}{2}$
L.H.S. $=2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}$
$=2\left(\frac{1}{2}\right)^{2}+\operatorname{cosec}^{2}\left(\pi+\frac{\pi}{6}\right)\left(\frac{1}{2}\right)^{2}$
$=2 \times \frac{1}{4}+\left(-\operatorname{cosec} \frac{\pi}{6}\right)^{2}\left(\frac{1}{4}\right)$
$=\frac{1}{2}+(-2)^{2}\left(\frac{1}{4}\right)$
$=\frac{1}{2}+\frac{4}{4}=\frac{1}{2}+1=\frac{3}{2}$
$=$ R.H.S.

Question 3:

Prove that $\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}=6$
L.H.S. $=\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}$
$=(\sqrt{3})^{2}+\operatorname{cosec}\left(\pi-\frac{\pi}{6}\right)+3\left(\frac{1}{\sqrt{3}}\right)^{2}$
$=3+\operatorname{cosec} \frac{\pi}{6}+3 \times \frac{1}{3}$
$=3+2+1=6$
$=$ R.H.S

Question 4:

Prove that $2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3}=10$
L.H.S $=2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3}$
$=2\left\{\sin \left(\pi-\frac{\pi}{4}\right)\right\}^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+2(2)^{2}$
$=2\left\{\sin \frac{\pi}{4}\right\}^{2}+2 \times \frac{1}{2}+8$
$=2\left(\frac{1}{\sqrt{2}}\right)^{2}+1+8$
$=1+1+8$
$=10$
$=$ R.H.S

Question 5:

Find the value of:
(i) $\sin 75^{\circ}$
(ii) $\tan 15^{\circ}$
(i) $\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)$
$=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$
$[\sin (x+y)=\sin x \cos y+\cos x \sin y]$

$$
\begin{aligned}
& =\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right) \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}
\end{aligned}
$$

(ii) $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)$

$$
\begin{aligned}
& =\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}} \quad\left[\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}\right] \\
& =\frac{1-\frac{1}{\sqrt{3}}}{1+1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} \\
& =\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{3+1-2 \sqrt{3}}{(\sqrt{3})^{2}-(1)^{2}} \\
& =\frac{4-2 \sqrt{3}}{3-1}=2-\sqrt{3}
\end{aligned}
$$

Question 6:
Prove that: $\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)=\sin (x+y)$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right) \\
& =\frac{1}{2}\left[2 \cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)\right]+\frac{1}{2}\left[-2 \sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)\right] \\
& =\frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}+\cos \left\{\left(\frac{\pi}{4}-x\right)-\left(\frac{\pi}{4}-y\right)\right\}\right] \\
& +\frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}-\cos \left\{\left(\frac{\pi}{4}-x\right)-\left(\frac{\pi}{4}-y\right)\right\}\right] \\
& \\
& {[\because 2 \cos A \cos B=\cos (A+B)+\cos (A-B)]} \\
& -2 \sin A \sin B=\cos (A+B)-\cos (A-B)] \\
& = \\
& 2 \times \frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}\right] \\
& =\cos \left[\frac{\pi}{2}-(x+y)\right] \\
& =\sin (x+y) \\
& =R \cdot H \cdot S
\end{aligned}
$$

Question 7:

Prove that:

$$
\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^{2}
$$

It is known that

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \text { and } \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
$$

$$
\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\frac{\left(\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan \frac{\pi}{4} \tan x}\right)}{\left(\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right)}=\frac{\left(\frac{1+\tan x}{1-\tan x}\right)}{\left(\frac{1-\tan x}{1+\tan x}\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^{2}=\text { R.H.S. }
$$

\therefore L.H.S. $=$

Question 8:

Prove that

$$
\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}=\cot ^{2} x
$$

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)} \\
& =\frac{[-\cos x][\cos x]}{(\sin x)(-\sin x)} \\
& =\frac{-\cos ^{2} x}{-\sin ^{2} x} \\
& =\cot ^{2} x \\
& =\text { R.H.S. }
\end{aligned}
$$

Question 9:

$$
\begin{aligned}
& \cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1 \\
& \text { L.H.S. }=\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]
\end{aligned}
$$

$$
=\sin x \cos x[\tan x+\cot x]
$$

$$
=\sin x \cos x\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right)
$$

$$
=(\sin x \cos x)\left[\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right]
$$

$$
=1=\text { R.H.S. }
$$

Question 10:

Prove that $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$
L.H.S. $=\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x$
$=\frac{1}{2}[2 \sin (n+1) x \sin (n+2) x+2 \cos (n+1) x \cos (n+2) x]$
$=\frac{1}{2}\left[\begin{array}{l}\cos \{(n+1) x-(n+2) x\}-\cos \{(n+1) x+(n+2) x\} \\ +\cos \{(n+1) x+(n+2) x\}+\cos \{(n+1) x-(n+2) x\}\end{array}\right]$
$\left[\begin{array}{l}\because-2 \sin A \sin B=\cos (A+B)-\cos (A-B) \\ 2 \cos A \cos B=\cos (A+B)+\cos (A-B)\end{array}\right]$
$=\frac{1}{2} \times 2 \cos \{(n+1) x-(n+2) x\}$
$=\cos (-x)=\cos x=$ R.H.S.

Question 11:

Prove that $\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$
It is known that $\cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$.
\therefore L.H.S. $=\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)$
$=-2 \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)+\left(\frac{3 \pi}{4}-x\right)}{2}\right\} \cdot \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)-\left(\frac{3 \pi}{4}-x\right)}{2}\right\}$
$=-2 \sin \left(\frac{3 \pi}{4}\right) \sin x$
$=-2 \sin \left(\pi-\frac{\pi}{4}\right) \sin x$
$=-2 \sin \frac{\pi}{4} \sin x$
$=-2 \times \frac{1}{\sqrt{2}} \times \sin x$
$=-\sqrt{2} \sin \mathrm{x}$
$=$ R.H.S.

Question 12:

Prove that $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$

It is known
that $\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
\therefore L.H.S. $=\sin ^{2} 6 x-\sin ^{2} 4 x$
$=(\sin 6 x+\sin 4 x)(\sin 6 x-\sin 4 x)$
$=\left[2 \sin \left(\frac{6 x+4 x}{2}\right) \cos \left(\frac{6 x-4 x}{2}\right)\right]\left[2 \cos \left(\frac{6 x+4 x}{2}\right) \cdot \sin \left(\frac{6 x-4 x}{2}\right)\right]$
$=(2 \sin 5 x \cos x)(2 \cos 5 x \sin x)$
$=(2 \sin 5 x \cos 5 x)(2 \sin x \cos x)$
$=\sin 10 x \sin 2 x$
= R.H.S.

Question 13:

Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$

It is known that

$$
\cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)
$$

\therefore L.H.S. $=\cos ^{2} 2 x-\cos ^{2} 6 x$
$=(\cos 2 x+\cos 6 x)(\cos 2 x-6 x)$
$=\left[2 \cos \left(\frac{2 \mathrm{x}+6 \mathrm{x}}{2}\right) \cos \left(\frac{2 \mathrm{x}-6 \mathrm{x}}{2}\right)\right]\left[-2 \sin \left(\frac{2 \mathrm{x}+6 \mathrm{x}}{2}\right) \sin \frac{(2 \mathrm{x}-6 \mathrm{x})}{2}\right]$
$=[2 \cos 4 x \cos (-2 x)][-2 \sin 4 x \sin (-2 x)]$
$=[2 \cos 4 x \cos 2 x][-2 \sin 4 x(-\sin 2 x)]$
$=\sin 8 x \sin 4 x$
= R.H.S.

Question 14:

Prove that $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$
L.H.S. $=\sin 2 x+2 \sin 4 x+\sin 6 x$
$=[\sin 2 x+\sin 6 x]+2 \sin 4 x$
$=\left[2 \sin \left(\frac{2 x+6 x}{2}\right)\left(\frac{2 x-6 x}{2}\right)\right]+2 \sin 4 x$
$\left[\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$=2 \sin 4 x \cos (-2 x)+2 \sin 4 x$
$=2 \sin 4 x \cos 2 x+2 \sin 4 x$
$=2 \sin 4 x(\cos 2 x+1)$
$=2 \sin 4 x\left(2 \cos ^{2} x-1+1\right)$
$=2 \sin 4 x\left(2 \cos ^{2} x\right)$
$=4 \cos ^{2} x \sin 4 x$
= R.H.S.

Question 15:

Prove that $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$
L.H.S $=\cot 4 x(\sin 5 x+\sin 3 x)$
$=\frac{\cot 4 x}{\sin 4 x}\left[2 \sin \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)\right]$
$\left[\because \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right]$
$=\left(\frac{\cos 4 x}{\sin 4 x}\right)[2 \sin 4 x \cos x]$
$=2 \cos 4 x \cos x$
R.H.S. $=\cot x(\sin 5 x-\sin 3 x)$
$=\frac{\cos x}{\sin x}\left[2 \cos \left(\frac{5 x+3 x}{2}\right) \sin \left(\frac{5 x-3 x}{2}\right)\right]$
$\left[\because \sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right]$
$=\frac{\cos x}{\sin x}[2 \cos 4 x \sin x]$
$=2 \cos 4 x \cdot \cos x$
L.H.S. = R.H.S.

Question 16:

Prove that $\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}$
It is known that

$$
\begin{aligned}
& \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right), \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \\
& \therefore \text { L.H.S }=\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}
\end{aligned}
$$

$=\frac{-2 \sin \left(\frac{9 x+5 x}{2}\right) \cdot \sin \left(\frac{9 x-5 x}{2}\right)}{2 \cos \left(\frac{17 x+3 x}{2}\right) \cdot \sin \left(\frac{17 x-3 x}{2}\right)}$
$=\frac{-2 \sin 7 x \cdot \sin 2 x}{2 \cos 10 x \cdot \sin 7 x}$
$=-\frac{\sin 2 x}{\cos 10 x}$
= R.H.S.

Question 17:

Prove that $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$

It is known that
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
\therefore L.H.S $=\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}$
$=\frac{2 \sin \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)}{2 \cos \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)}$
$=\frac{2 \sin 4 x \cdot \cos x}{2 \cos 4 x \cdot \cos x}$
$=\frac{\sin 4 x}{\cos 4 x}$
$=\tan 4 x=$ R.H.S.

Question 18:

Prove that $\frac{\sin x-\sin y}{\cos x+\cos y}=\tan \frac{x-y}{2}$

It is known that

Where You Get Complete Knowledge
$\sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
\therefore L.H.S. $=\frac{\sin x-\sin y}{\cos x+\cos y}$

$$
\begin{aligned}
& =\frac{2 \cos \left(\frac{x+y}{2}\right) \cdot \sin \left(\frac{x-y}{2}\right)}{2 \cos \left(\frac{x+y}{2}\right) \cdot \cos \left(\frac{x-y}{2}\right)} \\
& =\frac{\sin \left(\frac{x-y}{2}\right)}{\cos \left(\frac{x-y}{2}\right)} \\
& =\tan \left(\frac{x-y}{2}\right)=\text { R.H.S. }
\end{aligned}
$$

Question 19:

Prove that $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$

It is known that

$$
\begin{aligned}
& \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& \therefore \text { L.H.S. }=\frac{\sin \mathrm{x}+\sin 3 \mathrm{x}}{\cos \mathrm{x}+\cos 3 \mathrm{x}}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{2 \sin \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}{2 \cos \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)} \\
= & \frac{\sin 2 x}{\cos 2 x} \\
= & \tan 2 x \\
= & \text { R.H.S }
\end{aligned}
$$

Question 20:

Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$
It is known that

$$
\begin{aligned}
& \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right), \cos ^{2} A-\sin ^{2} A=\cos 2 A \\
& \therefore \text { L.H.S. }=\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x} \\
& =\frac{2 \cos \left(\frac{x+3 x}{2}\right) \sin \left(\frac{x-3 x}{2}\right)}{-\cos 2 x} \\
& =\frac{2 \cos 2 x \sin (-x)}{-\cos 2 x} \\
& =-2 \times(-\sin x) \\
& =2 \sin x=\text { R.H.S. }
\end{aligned}
$$

Question 21:

Prove that $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
L.H.S. $=\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}$
$=\frac{(\cos 4 x+\cos 2 x)+\cos 3 x}{(\sin 4 x+\sin 2 x)+\sin 3 x}$
$=\frac{2 \cos \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\cos 3 x}{2 \sin \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\sin 3 x}$
$\left[\because \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right), \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right]$
$=\frac{2 \cos 3 x \cos x+\cos 3 x}{2 \sin 3 x \cos x+\sin 3 x}$
$=\frac{\cos 3 x(2 \cos x+1)}{\sin 3 x(2 \cos x+1)}$
$=\cot 3 \mathrm{x}=$ R.H.S.

Question 22:

Prove that $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$
L.H.S. $=\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x$
$=\cot x \cot 2 x-\cot 3 x(\cot 2 x+\cot x)$
$=\cot x \cot 2 x-\cot (2 x+x)(\cot 2 x+\cot x)$
$=\cot x \cot 2 x-\left[\frac{\cot 2 x \cot x-1}{\cot x+\cot 2 x}\right](\cot 2 x+\cot x)$
$\left[\because \cot (A+B)=\frac{\cot A \cot B-1}{\cot A+\cot B}\right]$
$=\cot x \cot 2 x-(\cot 2 x \cot x-1)$
$=1=$ R.H.S.

Question 23:

Prove that $\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$

It is known that $\tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$.

$$
\begin{aligned}
& \therefore \text { L.H.S. }=\tan 4 x=\tan 2(2 x) \\
& =\frac{2 \tan 2 x}{1-\tan ^{2}(2 x)} \\
& =\frac{2\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)}{1-\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)^{2}} \\
& =\frac{\left(\frac{4 \tan ^{x}}{1-\tan ^{2} x}\right)}{\left[\frac{4 \tan ^{2} x}{1-\frac{\left(1-\tan ^{2} x\right)^{2}}{}}\right]} \\
& =\frac{\left(\frac{4 \tan ^{x}}{1-\tan ^{2} x}\right)}{\left[\frac{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x}{\left(1-\tan ^{2} x\right)^{2}}\right]} \\
& =\frac{4 \tan ^{2} x\left(1-\tan ^{2} x\right)}{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x} \\
& =\frac{4 \tan ^{2} x\left(1-\tan ^{2} x\right)}{1+\tan ^{4} x-2 \tan ^{2} x-4 \tan ^{2} x} \\
& =\frac{4 \tan ^{2}\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}=\text { R.H.S. }
\end{aligned}
$$

Question 24:

Prove that $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$
L.H.S. $=\cos 4 x$
$=\cos 2(2 x)$
$=1-2 \sin ^{2} 2 x\left[\cos 2 A=1-2 \sin ^{2} A\right]$
$=1-8 \sin ^{2} x \cos ^{2} x$
= R.H.S.

Question 25:

Prove that: $\cos 6 x=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
L.H.S. $=\cos 6 x$
$=\cos 3(2 x)$
$=4 \cos ^{3} 2 x-3 \cos 2 x\left[\cos 3 A=4 \cos ^{3} A-3 \cos A\right]$
$=4\left[\left(2 \cos ^{2} x-1\right)^{3}-3\left(2 \cos ^{2} x-1\right)\left[\cos 2 x=2 \cos ^{2} x-1\right]\right.$
$=4\left[\left(2 \cos ^{2} x\right)^{3}-(1)^{3}-3\left(2 \cos ^{2} x\right)^{2}+3\left(2 \cos ^{2} x\right)\right]-6 \cos ^{2} x+3$
$=4\left[8 \cos ^{6} x-1-12 \cos ^{4} x+6 \cos ^{2} x\right]-6 \cos ^{2} x+3$
$=32 \cos ^{6} x-4-48 \cos ^{4} x+24 \cos ^{2} x-6 \cos ^{2} x+3$
$=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
= R.H.S.

EXERCISE- 3.4

Question 1:

Find the principal and general solutions of the equation $\tan x=\sqrt{3}$
$\tan \mathrm{x}=\sqrt{3}$
It is known that $\tan \frac{\pi}{3}=\sqrt{3}$ and $\tan \left(\frac{4 \pi}{3}\right)=\tan \left(\pi+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}=\sqrt{3}$

Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{4 \pi}{3}$.

Now, $\tan x=\tan \frac{\pi}{3}$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is

$$
\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{3}, \text { where } \mathrm{n} \in \mathrm{Z}
$$

Question 2:

Find the principal and general solutions of the equation $\sec x=2$
$\sec x=2$

It is known that $\sec \frac{\pi}{3}=2$ and $\sec \frac{5 \pi}{3}=\sec \left(2 \pi-\frac{\pi}{3}\right)=\sec \frac{\pi}{3}=2$

Therefore, the principal solutions are $x=\frac{\pi}{3}$ and $\frac{5 \pi}{3}$.

Now, $\sec x=\sec \frac{\pi}{3}$
$\Rightarrow \cos x=\cos \frac{\pi}{3}$
$\left[\sec x=\frac{1}{\cos x}\right]$
$\Rightarrow \mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $\mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{3}$, where $n \in \mathbf{Z}$

Question 3:

Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$
$\cot \mathrm{x}=-\sqrt{3}$

It is known that $\cot \frac{\pi}{6}=\sqrt{3}$
$\therefore \cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$ and $\cot \left(2 \pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$
i.e., $\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\cot \frac{11 \pi}{6}=-\sqrt{3}$

Therefore, the principal solutions are $x=\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$.
Now, $\cot x=\cot \frac{5 \pi}{6}$
$\Rightarrow \tan x=\tan \frac{5 \pi}{6} \quad\left[\cot x=\frac{1}{\tan x}\right]$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+\frac{5 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $x=n \pi+\frac{5 \pi}{6}$, where $n \in Z$

Question 4:

Find the general solution of $\operatorname{cosec} x=-2$
$\operatorname{cosec} x=-2$
It is known that
$\operatorname{cosec} \frac{\pi}{6}=2$
$\therefore \operatorname{cosec}\left(\pi+\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$ and $\operatorname{cosec}\left(2 \pi-\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$
i.e., $\operatorname{cosec} \frac{7 \pi}{6}=-2$ and $\operatorname{cosec} \frac{11 \pi}{6}=-2$

Therefore, the principal solutions are $x=\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$.

Now, $\operatorname{cosec} \mathrm{x}=\operatorname{cosec} \frac{7 \pi}{6}$
$\Rightarrow \sin x=\sin \frac{7 \pi}{6} \quad\left[\operatorname{cosec} x=\frac{1}{\sin x}\right]$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $x=n \pi+(-1)^{n} \frac{7 \pi}{6}$, where $n \in Z$

Question 5:

Find the general solution of the equation $\cos 4 x=\cos 2 x$

$$
\begin{aligned}
& \cos 4 x=\cos 2 x \\
& \Rightarrow \cos 4 x-\cos 2 x=0 \\
& \Rightarrow-2 \sin \left(\frac{4 x+2 x}{2}\right) \sin \left(\frac{4 x-2 x}{2}\right)=0 \\
& {\left[\because \cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]} \\
& \Rightarrow \sin 3 x \sin x=0 \\
& \Rightarrow \sin 3 x=0 \quad \text { or } \quad \sin x=0 \\
& \therefore 3 x=n \pi \quad \text { or } \quad x=n \pi, \text { where } n \in Z \\
& \Rightarrow x=\frac{n \pi}{3} \quad \text { or } \quad x=n \pi, \text { where } n \in Z
\end{aligned}
$$

Question 6:

Find the general solution of the equation $\cos 3 x+\cos x-\cos 2 x=0$
$\cos 3 x+\cos x-\cos 2 x=0$
$\Rightarrow 2 \cos \left(\frac{3 \mathrm{x}+\mathrm{x}}{2}\right) \cos \left(\frac{3 \mathrm{x}-\mathrm{x}}{2}\right)-\cos 2 \mathrm{x}=0 \quad\left[\cos \mathrm{~A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right]$
$\Rightarrow 2 \cos 2 \mathrm{x} \cos \mathrm{x}-\cos 2 \mathrm{x}=0$
$\Rightarrow \cos 2 \mathrm{x}(2 \cos \mathrm{x}-1)=0$
$\Rightarrow \cos 2 \mathrm{x}=0 \quad$ or $\quad 2 \cos \mathrm{x}-\mathrm{l}=0$
$\Rightarrow \cos 2 x=0 \quad$ or $\quad \cos x=\frac{1}{2}$
$\therefore 2 \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{2} \quad$ or $\quad \cos \mathrm{x}=\cos \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{4} \quad$ or $\quad \mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$

Question 7:

Find the general solution of the equation $\sin 2 x+\cos x=0$

$$
\begin{aligned}
& \sin 2 x+\cos x=0 \\
& \Rightarrow 2 \sin x \cos x+\cos x=0 \\
& \Rightarrow \cos x(2 \sin x+1)=0 \\
& \Rightarrow \cos x=0 \quad \text { or } \quad 2 \sin x+1=0
\end{aligned}
$$

Now, $\cos x=0 \Rightarrow \cos x=(2 n+1) \frac{\pi}{2}$, where $n \in Z$
$2 \sin \mathrm{x}+1=0$
$\Rightarrow \sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \frac{7 \pi}{6}$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$
Therefore, the general solution is $(2 n+1) \frac{\pi}{2}$ or $n \pi+(-1)^{n} \frac{7 \pi}{6}, n \in Z$.

Question 8:

Find the general solution of the equation $\sec ^{2} 2 x=1-\tan 2 x$
$\sec ^{2} 2 \mathrm{x}=1-\tan 2 \mathrm{x}$
$\Rightarrow 1+\tan ^{2} 2 \mathrm{x}=1-\tan 2 \mathrm{x}$
$\Rightarrow \tan ^{2} 2 \mathrm{x}+\tan 2 \mathrm{x}=0$
$\Rightarrow \tan 2 \mathrm{x}(\tan 2 \mathrm{x}+1)=0$
$\Rightarrow \tan 2 \mathrm{x}=0$
or $\quad \tan 2 \mathrm{x}+1=0$

Now, $\tan 2 \mathrm{x}=0$
$\Rightarrow \tan 2 \mathrm{x}=\tan 0$
$\Rightarrow 2 \mathrm{x}=\mathrm{n} \pi+0$, where $\mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=\frac{\mathrm{n} \pi}{2}$, where $\mathrm{n} \in \mathrm{Z}$
$\tan 2 \mathrm{x}+1=0$
$\Rightarrow \tan 2 x=-1=-\tan \frac{\pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)=\tan \frac{3 \pi}{4}$
$\Rightarrow 2 \mathrm{x}=\mathrm{n} \pi+\frac{3 \pi}{4}$, where $\mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=\frac{\mathrm{n} \pi}{2}+\frac{3 \pi}{8}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $\frac{\mathrm{n} \pi}{2}$ or $\frac{\mathrm{n} \pi}{2}+\frac{3 \pi}{8}, \mathrm{n} \in \mathrm{Z}$

Question 9:

Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$

$$
\begin{aligned}
& \sin x+\sin 3 x+\sin 5 x=0 \\
& (\sin x+\sin 5 x)+\sin 3 x=0 \\
& \Rightarrow\left[2 \sin \left(\frac{x+5 x}{2}\right) \cos \left(\frac{x-5 x}{2}\right)\right]+\sin 3 x=0 \quad\left[\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right] \\
& \Rightarrow 2 \sin 3 x \cos (-2 x)+\sin 3 x=0 \\
& \Rightarrow 2 \sin 3 x \cos 2 x+\sin 3 x=0
\end{aligned}
$$

$\Rightarrow \sin 3 \mathrm{x}(2 \cos 2 \mathrm{x}+1)=0$
$\Rightarrow \sin 3 \mathrm{x}=0 \quad$ or $\quad 2 \cos 2 \mathrm{x}+1=0$

Now, $\sin 3 x=0 \Rightarrow 3 x=n \pi$, where $n \in Z$
i.e., $x=\frac{n \pi}{3}$, where $n \in Z$
$2 \cos 2 \mathrm{x}+1=0$
$\Rightarrow \cos 2 x=\frac{-1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)$
$\Rightarrow \cos 2 x=\cos \frac{2 \pi}{3}$
$\Rightarrow 2 \mathrm{x}=2 \mathrm{n} \pi \pm \frac{2 \pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$

Therefore, the general solution is $\frac{\mathrm{n} \pi}{3}$ or $\mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{Z}$

