Exercise-10.1

Question 1:

How many tangents can a circle have?
A circle can have infinite tangents.

Question 2:

Fill in the blanks:
(i) A tangent to a circle intersects it in \qquad point (s).
(ii) A line intersecting a circle in two points is called a \qquad .
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called \qquad .
(i) One
(ii) Secant
(iii) Two
(iv) Point of contact

Question 3:

A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=12 \mathrm{~cm}$. Length PQ is :
(A) 12 cm
(B) 13 cm (C) 8.5 cm
(D) $\sqrt{119} \mathrm{~cm}$

We know that the line drawn from the centre of the circle to the tangent is perpendicular to the tangent.
$\therefore \mathrm{OP} \perp \mathrm{PQ}$
By applying Pythagoras theorem in $\triangle \mathrm{OPQ}$,

Where You Get Complete Knowledge

$\therefore \mathrm{OP}^{2}+\mathrm{PQ}^{2}=\mathrm{OQ}^{2}$
$5^{2}+\mathrm{PQ}^{2}=12^{2}$
$\mathrm{PQ}^{2}=144-25$
$\mathrm{PQ}=\sqrt{119} \mathrm{~cm}$.
Hence, the correct answer is (D).

Question 4:

Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

It can be observed that $A B$ and $C D$ are two parallel lines. Line $A B$ is intersecting the circle at exactly two points, P and Q . Therefore, line AB is the secant of this circle. Since line CD is intersecting the circle at exactly one point, R, line $C D$ is the tangent to the circle.

Exercise - 10.2

Question 1:

From a point Q , the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(A) 7 cm (B) 12 cm
(C) 15 cm (D) 24.5 cm

Let O be the centre of the circle.
Given that,
$\mathrm{OQ}=25 \mathrm{~cm}$ and $\mathrm{PQ}=24 \mathrm{~cm}$
As the radius is perpendicular to the tangent at the point of contact, Therefore, $\mathrm{OP} \perp \mathrm{PQ}$

Applying Pythagoras theorem in $\triangle \mathrm{OPQ}$, we obtain
$\mathrm{OP}^{2}+\mathrm{PQ}^{2}=\mathrm{OQ}^{2}$
$\mathrm{OP}^{2}+24^{2}=25^{2}$
$\mathrm{OP}^{2}=625-576$
$\mathrm{OP}^{2}=49$
$\mathrm{OP}=7$
Therefore, the radius of the circle is 7 cm .

Hence, alternative (A) is correct.

Question 2:

In the given figure, if $T P$ and $T Q$ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{PTQ}$ is equal to
(A) 60° (B) 70°
(C) 80° (D) 90°

It is given that TP and TQ are tangents.
Therefore, radius drawn to these tangents will be perpendicular to the tangents.
Thus, $\mathrm{OP} \perp \mathrm{TP}$ and $\mathrm{OQ} \perp \mathrm{TQ}$
$\angle \mathrm{OPT}=90^{\circ}$
$\angle \mathrm{OQT}=90^{\circ}$
In quadrilateral POQT ,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OPT}+\angle \mathrm{POQ}+\angle \mathrm{OQT}+\angle \mathrm{PTQ}=360^{\circ}$
$\Rightarrow 90^{\circ}+110^{\circ}+90^{\circ}+\angle \mathrm{PTQ}=360^{\circ}$

Hence, alternative (B) is correct.

Question 3:

If tangents PA and PB from a point P to a circle with centre O are inclined to each other an angle of 80°, then $\angle \mathrm{POA}$ is equal to
(A) 50° (B) 60°
(C) 70° (D) 80°

It is given that PA and PB are tangents.

Therefore, the radius drawn to these tangents will be perpendicular to the tangents.

Thus, $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$
$\angle \mathrm{OBP}=90^{\circ}$
$\angle \mathrm{OAP}=90^{\circ}$
In AOBP,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$
$90^{\circ}+80^{\circ}+90^{\circ}+\angle \mathrm{BOA}=360^{\circ}$
$\angle \mathrm{BOA}=100^{\circ}$

In $\triangle \mathrm{OPB}$ and $\triangle \mathrm{OPA}$,
$\mathrm{AP}=\mathrm{BP}$ (Tangents from a point)
$\mathrm{OA}=\mathrm{OB}$ (Radii of the circle)
$\mathrm{OP}=\mathrm{OP}($ Common side $)$
Therefore, $\Delta \mathrm{OPB} \cong \triangle \mathrm{OPA}$ (SSS congruence criterion)
$\mathrm{A} \leftrightarrow \mathrm{B}, \mathrm{P} \leftrightarrow \mathrm{P}, \mathrm{O} \leftrightarrow \mathrm{O}$
And thus, $\angle \mathrm{POB}=\angle \mathrm{POA}$

$$
\angle \mathrm{POA}=\frac{1}{2} \angle \mathrm{AOB}=\frac{100^{\circ}}{2}=50^{\circ}
$$

Hence, alternative (A) is correct.

Question 4:

Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively.

Radius drawn to these tangents will be perpendicular to the tangents.
Thus, $\mathrm{OA} \perp \mathrm{RS}$ and $\mathrm{OB} \perp \mathrm{PQ}$
$\angle \mathrm{OAR}=90^{\circ}$
$\angle \mathrm{OBP}=90^{\circ}$
$\angle \mathrm{OBQ}=90^{\circ}$
It can be observed that
$\angle \mathrm{OAR}=\angle \mathrm{OBQ}$ (Alternate interior angles)
$\angle \mathrm{OAS}=\angle \mathrm{OBP}$ (Alternate interior angles)
Since alternate interior angles are equal, lines PQ and RS will be parallel.

Question 5:

Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Let us consider a circle with centre O . Let AB be a tangent which touches the circle at P .

We have to prove that the line perpendicular to AB at P passes through centre O . We shall prove this by contradiction method.

Let us assume that the perpendicular to AB at P does not pass through centre O . Let it pass through another point O'. Join OP and O'P.

EDUCATION CENTRE

Where You Get Complete Knowledge
As perpendicular to AB at P passes through O ', therefore,
$\angle \mathrm{O}^{\prime} \mathrm{PB}=90^{\circ} \ldots$ (1)
O is the centre of the circle and P is the point of contact. We know the line joining the centre and the point of contact to the tangent of the circle are perpendicular to each other.
$\therefore \angle \mathrm{OPB}=90^{\circ} \ldots$
Comparing equations (1) and (2), we obtain
$\angle O^{\prime} \mathrm{PB}=\angle \mathrm{OPB}$
From the figure, it can be observed that,
$\angle \mathrm{O}^{\prime} \mathrm{PB}<\angle \mathrm{OPB} \ldots$.. (4)
Therefore, $\angle \mathrm{O}^{\prime} \mathrm{PB}=\angle \mathrm{OPB}$ is not possible. It is only possible, when the line O'P coincides with OP.

Therefore, the perpendicular to AB through P passes through centre O .

Question 6:

The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Let us consider a circle centered at point O .
$A B$ is a tangent drawn on this circle from point A.

EDUCATION CENTRE

Where You Get Complete Knowledge
Given that,
$\mathrm{OA}=5 \mathrm{~cm}$ and $\mathrm{AB}=4 \mathrm{~cm}$
In $\triangle \mathrm{ABO}$,
$\mathrm{OB} \perp \mathrm{AB}$ (Radius \perp tangent at the point of contact)
Applying Pythagoras theorem in $\triangle \mathrm{ABO}$, we obtain

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BO}^{2}=\mathrm{OA}^{2} \\
& 4^{2}+\mathrm{BO}^{2}=5^{2} \\
& 16+\mathrm{BO}^{2}=25 \\
& \mathrm{BO}^{2}=9 \\
& \mathrm{BO}=3
\end{aligned}
$$

Hence, the radius of the circle is 3 cm .

Question 7:

Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Let the two concentric circles be centered at point O . And let PQ be the chord of the larger circle which touches the smaller circle at point A. Therefore, PQ is tangent to the smaller circle.
$\mathrm{OA} \perp \mathrm{PQ}(\mathrm{As} \mathrm{OA}$ is the radius of the circle)

Where You Get Complete Knowledge
Applying Pythagoras theorem in $\triangle \mathrm{OAP}$, we obtain
$\mathrm{OA}^{2}+\mathrm{AP}^{2}=\mathrm{OP}^{2}$
$3^{2}+\mathrm{AP}^{2}=5^{2}$
$9+\mathrm{AP}^{2}=25$
$\mathrm{AP}^{2}=16$
$\mathrm{AP}=4$
In $\triangle \mathrm{OPQ}$,
Since $\mathrm{OA} \perp \mathrm{PQ}$,
$\mathrm{AP}=\mathrm{AQ}$ (Perpendicular from the center of the circle bisects the chord)
$\therefore \mathrm{PQ}=2 \mathrm{AP}=2 \times 4=8$
Therefore, the length of the chord of the larger circle is 8 cm .

Question 8:

A quadrilateral ABCD is drawn to circumscribe a circle (see given figure) Prove that $\mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$

It can be observed that
$\mathrm{DR}=\mathrm{DS}($ Tangents on the circle from point D$) \ldots$ (1)

EDUCATION CENTRE

Where You Get Complete Knowledge
$\mathrm{CR}=\mathrm{CQ}$ (Tangents on the circle from point C) ... (2)
$\mathrm{BP}=\mathrm{BQ}$ (Tangents on the circle from point B) \ldots (3)
$\mathrm{AP}=\mathrm{AS}$ (Tangents on the circle from point A) ... (4)
Adding all these equations, we obtain
$\mathrm{DR}+\mathrm{CR}+\mathrm{BP}+\mathrm{AP}=\mathrm{DS}+\mathrm{CQ}+\mathrm{BQ}+\mathrm{AS}$
$(\mathrm{DR}+\mathrm{CR})+(\mathrm{BP}+\mathrm{AP})=(\mathrm{DS}+\mathrm{AS})+(\mathrm{CQ}+\mathrm{BQ})$
$C D+A B=A D+B C$

Question 9:

In the given figure, XY and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

Let us join point O to C .

In $\triangle \mathrm{OPA}$ and $\triangle \mathrm{OCA}$,
$\mathrm{OP}=\mathrm{OC}$ (Radii of the same circle)

EDUCATION CENTRE

Where You Get Complete Knowledge
$\mathrm{AP}=\mathrm{AC}$ (Tangents from point A)
$\mathrm{AO}=\mathrm{AO}($ Common side $)$
$\Delta \mathrm{OPA} \cong \Delta \mathrm{OCA}(\mathrm{SSS}$ congruence criterion)
Therefore, $\mathrm{P} \leftrightarrow \mathrm{C}, \mathrm{A} \leftrightarrow \mathrm{A}, \mathrm{O} \leftrightarrow \mathrm{O}$
$\angle \mathrm{POA}=\angle \mathrm{COA} \ldots(i)$
Similarly, $\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
$\angle \mathrm{QOB}=\angle \mathrm{COB} \ldots(i i)$
Since POQ is a diameter of the circle, it is a straight line.
Therefore, $\angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}$
From equations (i) and (ii), it can be observed that
$2 \angle \mathrm{COA}+2 \angle \mathrm{COB}=180^{\circ}$
$\angle \mathrm{COA}+\angle \mathrm{COB}=90^{\circ}$
$\angle \mathrm{AOB}=90^{\circ}$

Question 10:

Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Let us consider a circle centered at point O . Let P be an external point from which two tangents PA and PB are drawn to the circle which are touching the circle at point A and B respectively and AB is the line segment, joining point of contacts A and B together such that it subtends $\angle A O B$ at center O of the circle.

It can be observed that
OA (radius) \perp PA (tangent)
Therefore, $\angle \mathrm{OAP}=90^{\circ}$
Similarly, OB (radius) \perp PB (tangent)
$\angle \mathrm{OBP}=90^{\circ}$
In quadrilateral OAPB,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$
$90^{\circ}+\angle \mathrm{APB}+90^{\circ}+\angle \mathrm{BOA}=360^{\circ}$
$\angle \mathrm{APB}+\angle \mathrm{BOA}=180^{\circ}$
Hence, it can be observed that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the linesegment joining the points of contact at the centre.

Question 11:

Prove that the parallelogram circumscribing a circle is a rhombus.
Since ABCD is a parallelogram,

Where You Get Complete Knowledge

It can be observed that
$\mathrm{DR}=\mathrm{DS}($ Tangents on the circle from point D$)$
$C R=C Q($ Tangents on the circle from point $C)$
$\mathrm{BP}=\mathrm{BQ}($ Tangents on the circle from point B$)$
$\mathrm{AP}=\mathrm{AS}$ (Tangents on the circle from point A)
Adding all these equations, we obtain
$\mathrm{DR}+\mathrm{CR}+\mathrm{BP}+\mathrm{AP}=\mathrm{DS}+\mathrm{CQ}+\mathrm{BQ}+\mathrm{AS}$
$(\mathrm{DR}+\mathrm{CR})+(\mathrm{BP}+\mathrm{AP})=(\mathrm{DS}+\mathrm{AS})+(\mathrm{CQ}+\mathrm{BQ})$
$C D+A B=A D+B C$
On putting the values of equations (1) and (2) in this equation, we obtain
$2 \mathrm{AB}=2 \mathrm{BC}$
$\mathrm{AB}=\mathrm{BC}$
Comparing equations (1), (2), and (3), we obtain
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Hence, ABCD is a rhombus.
Question 12:

A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see given figure). Find the sides $A B$ and AC.

Let the given circle touch the sides AB and AC of the triangle at point E and F respectively and the length of the line segment AF be x.

In $\triangle \mathrm{ABC}$,
$\mathrm{CF}=\mathrm{CD}=6 \mathrm{~cm}$ (Tangents on the circle from point C)
$\mathrm{BE}=\mathrm{BD}=8 \mathrm{~cm}$ (Tangents on the circle from point B)
$\mathrm{AE}=\mathrm{AF}=x($ Tangents on the circle from point A$)$
$\mathrm{AB}=\mathrm{AE}+\mathrm{EB}=x+8$
$\mathrm{BC}=\mathrm{BD}+\mathrm{DC}=8+6=14$

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
& \mathrm{CA}=\mathrm{CF}+\mathrm{FA}=6+x \\
& 2 s=\mathrm{AB}+\mathrm{BC}+\mathrm{CA} \\
& =x+8+14+6+x \\
& =28+2 x \\
& s=14+x
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ABC} & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{\{14+x\}\{(14+x)-14\}\{(14+x)-(6+x)\}\{(14+x)-(8+x)\}} \\
& =\sqrt{(14+x)(x)(8)(6)} \\
& =4 \sqrt{3\left(14 x+x^{2}\right)}
\end{aligned}
$$

Area of $\triangle \mathrm{OBC}=\frac{1}{2} \times \mathrm{OD} \times \mathrm{BC}=\frac{1}{2} \times 4 \times 14=28$

Area of $\triangle \mathrm{OCA}=\frac{1}{2} \times \mathrm{OF} \times \mathrm{AC}=\frac{1}{2} \times 4 \times(6+x)=12+2 x$

Area of $\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{OE} \times \mathrm{AB}=\frac{1}{2} \times 4 \times(8+x)=16+2 x$

Area of $\triangle \mathrm{ABC}=$ Area of $\triangle \mathrm{OBC}+$ Area of $\triangle \mathrm{OCA}+$ Area of $\triangle \mathrm{OAB}$

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
& 4 \sqrt{3\left(14 x+x^{2}\right)}=28+12+2 x+16+2 x \\
& \Rightarrow 4 \sqrt{3\left(14 x+x^{2}\right)}=56+4 x \\
& \Rightarrow \sqrt{3\left(14 x+x^{2}\right)}=14+x \\
& \Rightarrow 3\left(14 x+x^{2}\right)=(14+x)^{2} \\
& \Rightarrow 42 x+3 x^{2}=196+x^{2}+28 x \\
& \Rightarrow 2 x^{2}+14 x-196=0 \\
& \Rightarrow x^{2}+7 x-98=0 \\
& \Rightarrow x^{2}+14 x-7 x-98=0 \\
& \Rightarrow x(x+14)-7(x+14)=0 \\
& \Rightarrow(x+14)(x-7)=0
\end{aligned}
$$

Either $x+14=0$ or $x-7=0$
Therefore, $x=-14$ and 7
However, $x=-14$ is not possible as the length of the sides will be negative.
Therefore, $x=7$
Hence, $\mathrm{AB}=x+8=7+8=15 \mathrm{~cm}$
$\mathrm{CA}=6+x=6+7=13 \mathrm{~cm}$

Question 13:

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

EDUCATION CENTRE

Where You Get Complete Knowledge
Let ABCD be a quadrilateral circumscribing a circle centered at O such that it touches the circle at point $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$. Let us join the vertices of the quadrilateral ABCD to the center of the circle.

Consider $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OAS}$,
$\mathrm{AP}=\mathrm{AS}$ (Tangents from the same point)
$\mathrm{OP}=\mathrm{OS}$ (Radii of the same circle)
$\mathrm{OA}=\mathrm{OA}($ Common side $)$
$\Delta \mathrm{OAP} \cong \Delta \mathrm{OAS}(\mathrm{SSS}$ congruence criterion)
Therefore, $\mathrm{A} \leftrightarrow \mathrm{A}, \mathrm{P} \leftrightarrow \mathrm{S}, \mathrm{O} \leftrightarrow \mathrm{O}$
And thus, $\angle \mathrm{POA}=\angle \mathrm{AOS}$
$\angle 1=\angle 8$
Similarly,
$\angle 2=\angle 3$
$\angle 4=\angle 5$
$\angle 6=\angle 7$
$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$(\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ}$
$2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ}$
$2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}$
$(\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ}$
$\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
Similarly, we can prove that $\angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$

EDUCATION CENTRE

Where You Get Complete Knowledge
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

