EDUCATION CENTRE

Where You Get Complete Knowledge

Exercise-4.1

Question 1:

Evaluate the determinants in Exercises 1 and 2.
$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$
$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|=2(-1)-4(-5)=-2+20=18$

Question 2:

Evaluate the determinants in Exercises 1 and 2.
(i) $\left\lvert\, \begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right.$ (ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
(i) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|=(\cos \theta)(\cos \theta)-(-\sin \theta)(\sin \theta)=\cos ^{2} \theta+\sin ^{2} \theta=1$
(ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$=\left(x^{2}-x+1\right)(x+1)-(x-1)(x+1)$
$=x^{3}-x^{2}+x+x^{2}-x+1-\left(x^{2}-1\right)$
$=x^{3}+1-x^{2}+1$
$=x^{3}-x^{2}+2$
Question 3:
If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then show that $|2 A|=4|A|$

EDUCATION CENTRE

Where You Get Complete Knowledge
The given matrix is $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$.
$\therefore 2 A=2\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$
\therefore L.H.S. $=|2 A|=\left|\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right|=2 \times 4-4 \times 8=8-32=-24$
Now, $|A|=\left|\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right|=1 \times 2-2 \times 4=2-8=-6$
\therefore R.H.S. $=4|A|=4 \times(-6)=-24$
\therefore L.H.S. $=$ R.H.S.

Question 4:

If $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$, then show that $|3 A|=27|A|$.
The given matrix is $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$.
It can be observed that in the first column, two entries are zero. Thus, we expand along the first column $\left(\mathrm{C}_{1}\right)$ for easier calculation.

$$
\begin{align*}
& |\mathrm{A}|=1\left|\begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right|-0\left|\begin{array}{ll}
0 & 1 \\
0 & 4
\end{array}\right|+0\left|\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right|=1(4-0)-0+0=4 \\
& \therefore 27|\mathrm{~A}|=27(4)=108 \tag{i}\\
& \text { Now, } 3 \mathrm{~A}=3\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 4
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 3 \\
0 & 3 & 6 \\
0 & 0 & 12
\end{array}\right] \\
& \therefore|3 \mathrm{~A}|=3\left|\begin{array}{ll}
3 & 6 \\
0 & 12
\end{array}\right|-0\left|\begin{array}{ll}
0 & 3 \\
0 & 12
\end{array}\right|+0\left|\begin{array}{ll}
0 & 3 \\
3 & 6
\end{array}\right| \\
& \quad=3(36-0)=3(36)=108 \tag{ii}
\end{align*} \ldots \text { (ii) } \quad l
$$

EDUCATION CENTRE

Where You Get Complete Knowledge
From equations (i) and (ii), we have:

$$
|3 A|=27|A|
$$

Hence, the given result is proved.

Question 5:

Evaluate the determinants
(i) $\left\lvert\, \begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right.$ (iii) $\left|\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right|$
(ii) $\left\lvert\, \begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right.$ (iv) $\left[\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right]$
(i) Let $A=\left|\begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$.

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.

$$
|A|=-0\left|\begin{array}{cc}
-1 & -2 \\
-5 & 0
\end{array}\right|+0\left|\begin{array}{cc}
3 & -2 \\
3 & 0
\end{array}\right|-(-1)\left|\begin{array}{ll}
3 & -1 \\
3 & -5
\end{array}\right|=(-15+3)=-12
$$

(ii) Let $A=\left[\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right]$.

By expanding along the first row, we have:

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
|A| & =3\left|\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right|+4\left|\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right|+5\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right| \\
& =3(1+6)+4(1+4)+5(3-2) \\
& =3(7)+4(5)+5(1) \\
& =21+20+5=46
\end{aligned}
$$

(iii) Let $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right]$.

By expanding along the first row, we have:

$$
\begin{aligned}
|A| & =0\left|\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right|-1\left|\begin{array}{cc}
-1 & -3 \\
-2 & 0
\end{array}\right|+2\left|\begin{array}{ll}
-1 & 0 \\
-2 & 3
\end{array}\right| \\
& =0-1(0-6)+2(-3-0) \\
& =-1(-6)+2(-3) \\
& =6-6=0
\end{aligned}
$$

$$
\text { (iv) Let } A=\left[\begin{array}{ccc}
2 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right] .
$$

By expanding along the first column, we have:

$$
\begin{aligned}
|A| & =2\left|\begin{array}{cc}
2 & -1 \\
-5 & 0
\end{array}\right|-0\left|\begin{array}{cc}
-1 & -2 \\
-5 & 0
\end{array}\right|+3\left|\begin{array}{cc}
-1 & -2 \\
2 & -1
\end{array}\right| \\
& =2(0-5)-0+3(1+4) \\
& =-10+15=5
\end{aligned}
$$

Question 6:

If $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$, find $|\mathrm{A}|$.

EDUCATION CENTRE

Where You Get Complete Knowledge
Let $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$.

By expanding along the first row, we have:

$$
\begin{aligned}
|A| & =1\left|\begin{array}{ll}
1 & -3 \\
4 & -9
\end{array}\right|-1\left|\begin{array}{ll}
2 & -3 \\
5 & -9
\end{array}\right|-2\left|\begin{array}{ll}
2 & 1 \\
5 & 4
\end{array}\right| \\
& =1(-9+12)-1(-18+15)-2(8-5) \\
& =1(3)-1(-3)-2(3) \\
& =3+3-6 \\
& =6-6 \\
& =0
\end{aligned}
$$

Question 7:

Find values of x, if
(i) $\left|\begin{array}{ll}2 & 4 \\ 2 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$ (ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$
(i) $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
$\Rightarrow 2 \times 1-5 \times 4=2 x \times x-6 \times 4$
$\Rightarrow 2-20=2 x^{2}-24$
$\Rightarrow 2 x^{2}=6$
$\Rightarrow x^{2}=3$
$\Rightarrow x= \pm \sqrt{3}$
(ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
$\Rightarrow 2 \times 5-3 \times 4=x \times 5-3 \times 2 x$
$\Rightarrow 10-12=5 x-6 x$
$\Rightarrow-2=-x$
$\Rightarrow x=2$

If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$, then x is equal to
(A) $6(\mathrm{~B}) \pm 6(\mathrm{C})-6(\mathrm{D}) 0$

Answer: B
$\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$
$\Rightarrow x^{2}-36=36-36$
$\Rightarrow x^{2}-36=0$
$\Rightarrow x^{2}=36$
$\Rightarrow x= \pm 6$
Hence, the correct answer is B.

Exercise-4.2

Question 1:

Using the property of determinants and without expanding, prove that:

$$
\left|\begin{array}{lll}
x & a & x+a \\
y & b & y+b \\
z & c & z+c
\end{array}\right|=0
$$

$$
\left|\begin{array}{lll}
x & a & x+a \\
y & b & y+b \\
z & c & z+c
\end{array}\right|=\left|\begin{array}{lll}
x & a & x \\
y & b & y \\
z & c & z
\end{array}\right|+\left|\begin{array}{lll}
x & a & a \\
y & b & b \\
z & c & c
\end{array}\right|=0+0=0
$$

[Here, the two columns of the determinants are identical]

Question 2:

Using the property of determinants and without expanding, prove that:

EDUCATION CENTRE

Where You Get Complete Knowledge
$\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$
$\Delta=\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
a-c & b-a & c-b \\
b-c & c-a & a-b \\
-(a-c) & -(b-a) & -(c-b)
\end{array}\right| \\
& =-\left|\begin{array}{lll}
a-c & b-a & c-b \\
b-c & c-a & a-b \\
a-c & b-a & c-b
\end{array}\right|
\end{aligned}
$$

Here, the two rows R_{1} and R_{3} are identical.
$\therefore \Delta=0$.

Question 3:

Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=0$

		Where You		Complete Knowledge
12	7	$65 \quad \mid 2$	7	$63+2$
3	8	$75=3$	8	$72+3$
5	9	86	9	$81+5$
2	7	$63 \mid 2$	7	2
$=3$	8	$72+3$	8	3
5	9	815	9	5
2	7	9(7)		
$=3$	8	$9(8)+0$		[Two columns are identical]
5	9	$9(9)$		
2	7	7		
$=93$	8	8		
		9		
$=0$				[Two columns are identical]

Question 4:

Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$
$\Delta=\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|$
By applying $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{2}$, we have:
$\Delta=\left|\begin{array}{lll}1 & b c & a b+b c+c a \\ 1 & c a & a b+b c+c a \\ 1 & a b & a b+b c+c a\end{array}\right|$
Here, two columns C_{1} and C_{3} are proportional.
$\therefore \Delta=0$.

EDUCATION CENTRE

Where You Get Complete Knowledge
Question 5:
Using the property of determinants and without expanding, prove that:

$$
\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|=2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|
$$

$$
\begin{align*}
& \Delta=\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right| \\
&=\left|\begin{array}{llll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a & p & x
\end{array}\right|+\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
b & q & y
\end{array}\right| \\
&=\Delta_{1}+\Delta_{2} \text { (say) } \tag{1}\\
& \text { Now, } \Delta_{1}=\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a & p & x
\end{array}\right|
\end{align*}
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$, we have:
$\Delta_{1}=\left|\begin{array}{lll}b+c & q+r & y+z \\ c & r & z \\ a & p & x\end{array}\right|$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$, we have:
$\Delta_{1}=\left|\begin{array}{lll}b & q & y \\ c & r & z \\ a & p & x\end{array}\right|$

Applying $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3}$ and $\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}$, we have:

$$
\begin{aligned}
& \Delta_{1}=(-1)^{2}\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|=\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right| \\
& \Delta_{2}
\end{aligned}=\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
b & q & y
\end{array}\right|, ~ l
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3}$, we have:

EDUCATION CENTRE

Where You Get Complete Knowledge
$\Delta_{2}=\left|\begin{array}{lll}c & r & z \\ c+a & r+p & z+x \\ b & q & y\end{array}\right|$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$, we have:
$\Delta_{2}=\left|\begin{array}{lll}c & r & z \\ a & p & x \\ b & q & y\end{array}\right|$
Applying $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}$ and $\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}$, we have:

$$
\Delta_{2}=(-1)^{2}\left|\begin{array}{lll}
a & p & x \tag{3}\\
b & q & y \\
c & r & z
\end{array}\right|=\left|\begin{array}{ccc}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|
$$

From (1), (2), and (3), we have:

$$
\Delta=2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|
$$

Hence, the given result is proved.

Question 6:

By using properties of determinants, show that:
$\left|\begin{array}{lll}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$

We have,

EDUCATION CENTRE
Where You Get Complete Knowledge
$\Delta=\left|\begin{array}{lll}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
Applying $\mathrm{R}_{1} \rightarrow c \mathrm{R}_{1}$, we have:
$\Delta=\frac{1}{c}\left|\begin{array}{lll}0 & a c & -b c \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-b \mathrm{R}_{2}$, we have:

$$
\begin{aligned}
\Delta & =\frac{1}{c}\left|\begin{array}{lll}
a b & a c & 0 \\
-a & 0 & -c \\
b & c & 0
\end{array}\right| \\
& =\frac{a}{c}\left|\begin{array}{lll}
b & c & 0 \\
-a & 0 & -c \\
b & c & 0
\end{array}\right|
\end{aligned}
$$

Here, the two rows R_{1} and R_{3} are identical.
$\therefore \Delta=0$.

Question 7:

By using properties of determinants, show that:

$$
\left|\begin{array}{lll}
-a^{2} & a b & a c \\
b a & -b^{2} & b c \\
c a & c b & -c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2}
$$

$$
\Delta=\left|\begin{array}{lll}
-a^{2} & a b & a c \\
b a & -b^{2} & b c \\
c a & c b & -c^{2}
\end{array}\right|
$$

$$
=a b c\left|\begin{array}{lll}
-a & b & c \\
a & -b & c \\
a & b & -c
\end{array}\right|
$$

[Taking out factors a, b, c from $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3}]
$=a^{2} b^{2} c^{2}\left|\begin{array}{lll}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right|$
[Taking out factors a, b, c from $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3}]

Where You Get Complete Knowledge
Applying $R_{2} \rightarrow R_{2}+R_{1}$ and $R_{3} \rightarrow R_{3}+R_{1}$, we have:

$$
\begin{aligned}
\Delta & =a^{2} b^{2} c^{2}\left|\begin{array}{lll}
-1 & 1 & 1 \\
0 & 0 & 2 \\
0 & 2 & 0
\end{array}\right| \\
& =a^{2} b^{2} c^{2}(-1)\left|\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right| \\
& =-a^{2} b^{2} c^{2}(0-4)=4 a^{2} b^{2} c^{2}
\end{aligned}
$$

Question 8:

By using properties of determinants, show that:
(i) $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
(ii) $\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$
(i) $\quad \operatorname{Let} \Delta=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$.

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3}$ and $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
0 & a-c & a^{2}-c^{2} \\
0 & b-c & b^{2}-c^{2} \\
1 & c & c^{2}
\end{array}\right| \\
& =(c-a)(b-c)\left|\begin{array}{lll}
0 & -1 & -a-c \\
0 & 1 & b+c \\
1 & c & c^{2}
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$, we have:

Where You Get Complete Knowledge

$$
\begin{aligned}
\Delta & =(b-c)(c-a)\left|\begin{array}{lll}
0 & 0 & -a+b \\
0 & 1 & b+c \\
1 & c & c^{2}
\end{array}\right| \\
& =(a-b)(b-c)(c-a)\left|\begin{array}{lll}
0 & 0 & -1 \\
0 & 1 & b+c \\
1 & c & c^{2}
\end{array}\right|
\end{aligned}
$$

Expanding along C_{l}, we have:

$$
\Delta=(a-b)(b-c)(c-a)\left|\begin{array}{ll}
0 & -1 \\
1 & b+c
\end{array}\right|=(a-b)(b-c)(c-a)
$$

Hence, the given result is proved.
(ii) Let $\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|$.

Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3}$ and $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
0 & 0 & 1 \\
a-c & b-c & c \\
a^{3}-c^{3} & b^{3}-c^{3} & c^{3}
\end{array}\right| \\
& =\left|\begin{array}{lll}
0 & 0 & c \\
a-c & b-c & c^{3}
\end{array}\right| \\
(a-c)\left(a^{2}+a c+c^{2}\right) & (b-c)\left(b^{2}+b c+c^{2}\right) \\
& =(c-a)(b-c)\left|\begin{array}{lll}
0 & 0 & c \\
-1 & 1 & c^{3}
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$, we have:

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
\Delta & =(c-a)(b-c)\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & c \\
\left(b^{2}-a^{2}\right)+(b c-a c) & \left(b^{2}+b c+c^{2}\right) & c^{3}
\end{array}\right| \\
& =(b-c)(c-a)(a-b)\left|\begin{array}{lll}
0 & 0 & c \\
0 & 1 & c \\
-(a+b+c) & \left(b^{2}+b c+c^{2}\right) & c^{3}
\end{array}\right| \\
& =(a-b)(b-c)(c-a)(a+b+c)\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & \left(b^{2}+b c+c^{2}\right) & c^{3}
\end{array}\right|
\end{aligned}
$$

Expanding along C_{1}, we have:

$$
\begin{aligned}
\Delta & =(a-b)(b-c)(c-a)(a+b+c)(-1)\left|\begin{array}{ll}
0 & 1 \\
1 & c
\end{array}\right| \\
& =(a-b)(b-c)(c-a)(a+b+c)
\end{aligned}
$$

Hence, the given result is proved.

Question 9:

By using properties of determinants, show that:

$$
\begin{aligned}
& \left|\begin{array}{lll}
x & x^{2} & y z \\
y & y^{2} & z x \\
z & z^{2} & x y
\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x) \\
& \text { Let } \Delta=\left|\begin{array}{llr}
x & x^{2} & y z \\
y & y^{2} & z x \\
z & z^{2} & x y
\end{array}\right| .
\end{aligned}
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$, we have:

EDUCATION CENTRE

Where You Get Complete Knowledge

$\Delta=\left\lvert\, \begin{aligned} & x \\ & y-x \\ & z-x\end{aligned}\right.$ $=|$| x | x^{2} |
| :--- | :--- |
| $-(x-y)$ | $-(x-y)(x+y)$ |
| $(z-x)$ | $(z-x)(z+x)$ |

$$
=(x-y)(z-x)\left|\begin{array}{lll}
x & x^{2} & y z \\
-1 & -x-y & z \\
1 & z+x & -y
\end{array}\right|
$$

Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}$, we have:

$$
\begin{aligned}
\Delta & =(x-y)(z-x)\left|\begin{array}{lll}
x & x^{2} & y z \\
-1 & -x-y & z \\
0 & z-y & z-y
\end{array}\right| \\
& =(x-y)(z-x)(z-y)\left|\begin{array}{lll}
x & x^{2} & y z \\
-1 & -x-y & z \\
0 & 1 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =[(x-y)(z-x)(z-y)]\left[\left.(-1)\left|\begin{array}{cc}
x & y z \\
-1 & z
\end{array}\right|+1 \right\rvert\, \begin{array}{lc}
x & x^{2} \\
-1 & -x-y
\end{array}\right] \\
& =(x-y)(z-x)(z-y)\left[(-x z-y z)+\left(-x^{2}-x y+x^{2}\right)\right] \\
& =-(x-y)(z-x)(z-y)(x y+y z+z x) \\
& =(x-y)(y-z)(z-x)(x y+y z+z x)
\end{aligned}
$$

Hence, the given result is proved.

Question 10:

By using properties of determinants, show that:

EDUCATION CENTRE

Where You Get Complete Knowledge
(i) $2 x \quad 2 x \quad x+4$
(ii) $\left|\begin{array}{lll}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 y+k)$
(i)

$$
\Delta=\left|\begin{array}{lll}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
5 x+4 & 5 x+4 & 5 x+4 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right| \\
& =(5 x+4)\left|\begin{array}{lll}
1 & 1 & 1 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:

$$
\begin{aligned}
\Delta & =(5 x+4)\left|\begin{array}{lll}
1 & 0 & 0 \\
2 x & -x+4 & 0 \\
2 x & 0 & -x+4
\end{array}\right| \\
& =(5 x+4)(4-x)(4-x)\left|\begin{array}{lll}
1 & 0 & 0 \\
2 x & 1 & 0 \\
2 x & 0 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along C_{3}, we have:

$$
\begin{aligned}
\Delta & =(5 x+4)(4-x)^{2}\left|\begin{array}{ll}
1 & 0 \\
2 x & 1
\end{array}\right| \\
& =(5 x+4)(4-x)^{2}
\end{aligned}
$$

EDUCATION CENTRE

Where You Get Complete Knowledge
Hence, the given result is proved.
(ii)

$$
\Delta=\left|\begin{array}{lll}
y+k & y & y \\
y & y+k & y \\
y & y & y+k
\end{array}\right|
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
3 y+k \\
y & \begin{array}{l}
3 y+k \\
y+k
\end{array} & 3 y+k \\
y & y & y \\
y+k
\end{array}\right| \\
& =(3 y+k)\left|\begin{array}{lll}
1 & 1 & 1 \\
y & y+k & y \\
y & y & y+k
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:

$$
\begin{aligned}
\Delta & =(3 y+k)\left|\begin{array}{lll}
1 & 0 & 0 \\
y & k & 0 \\
y & 0 & k
\end{array}\right| \\
& =k^{2}(3 y+k)\left|\begin{array}{lll}
1 & 0 & 0 \\
y & 1 & 0 \\
y & 0 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along C_{3}, we have:

$$
\Delta=k^{2}(3 y+k)\left|\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right|=k^{2}(3 y+k)
$$

Hence, the given result is proved.

Question 11:

By using properties of determinants, show that:
(i) $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$

EDUCATION CENTRE

Where You Get Complete Knowledge
(ii) $\left|\begin{array}{llc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$
(i) $\Delta=\left|\begin{array}{ccr}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|$

Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
a+b+c & a+b+c & a+b+c \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{lll}
1 & 1 & 1 \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:

$$
\begin{aligned}
\Delta & =(a+b+c)\left|\begin{array}{lcc}
1 & 0 & 0 \\
2 b & -(a+b+c) & 0 \\
2 c & 0 & -(a+b+c)
\end{array}\right| \\
& =(a+b+c)^{3}\left|\begin{array}{lll}
1 & 0 & 0 \\
2 b & -1 & 0 \\
2 c & 0 & -1
\end{array}\right|
\end{aligned}
$$

Expanding along C_{3}, we have:

$$
\Delta=(a+b+c)^{3}(-1)(-1)=(a+b+c)^{3}
$$

Hence, the given result is proved.
(ii)

$$
\Delta=\left|\begin{array}{clr}
x+y+2 z & x & y \\
z & y+z+2 x & y \\
z & x & z+x+2 y
\end{array}\right|
$$

Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$, we have:

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
2(x+y+z) & x & y \\
2(x+y+z) & y+z+2 x & y \\
2(x+y+z) & x & z+x+2 y
\end{array}\right| \\
& =2(x+y+z)\left|\begin{array}{lll}
1 & x & y \\
1 & y+z+2 x & y \\
1 & x & z+x+2 y
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$, we have:

$$
\begin{aligned}
\Delta & =2(x+y+z)\left|\begin{array}{llll}
1 & & x & y \\
0 & & x+y+z & 0 \\
0 & & 0 & x+y+z
\end{array}\right| \\
& =2(x+y+z)^{3}\left|\begin{array}{lll}
1 & x & y \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{3}, we have:

$$
\Delta=2(x+y+z)^{3}(1)(1-0)=2(x+y+z)^{3}
$$

Hence, the given result is proved.

Question 12:

By using properties of determinants, show that:

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & x & x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|=\left(1-x^{3}\right)^{2} \\
& \Delta=\left|\begin{array}{llll}
1 & x & x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$, we have:

Where You Get Complete Knowledge

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
1+x+x^{2} & 1+x+x^{2} & 1+x+x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right| \\
& =\left(1+x+x^{2}\right)\left|\begin{array}{lll}
1 & 1 & 1 \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:

$$
\begin{aligned}
\Delta & =\left(1+x+x^{2}\right)\left|\begin{array}{lll}
1 & 0 & 0 \\
x^{2} & 1-x^{2} & x-x^{2} \\
x & x^{2}-x & 1-x
\end{array}\right| \\
& =\left(1+x+x^{2}\right)(1-x)(1-x)\left|\begin{array}{lll}
1 & 0 & 0 \\
x^{2} & 1+x & x \\
x & -x & 1
\end{array}\right| \\
& =\left(1-x^{3}\right)(1-x)\left|\begin{array}{lll}
1 & 0 & 0 \\
x^{2} & 1+x & x \\
x & -x & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{1}, we have:

$$
\begin{aligned}
\Delta & =\left(1-x^{3}\right)(1-x)(1)\left|\begin{array}{cc}
1+x & x \\
-x & 1
\end{array}\right| \\
& =\left(1-x^{3}\right)(1-x)\left(1+x+x^{2}\right) \\
& =\left(1-x^{3}\right)\left(1-x^{3}\right) \\
& =\left(1-x^{3}\right)^{2}
\end{aligned}
$$

Hence, the given result is proved.

Question 13:

By using properties of determinants, show that:

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\left|\begin{array}{cll}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}
$$

$$
\Delta=\left|\begin{array}{rll}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+b \mathrm{R}_{3}$ and $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-a \mathrm{R}_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lcl}
1+a^{2}+b^{2} & 0 & -b\left(1+a^{2}+b^{2}\right) \\
0 & 1+a^{2}+b^{2} & a\left(1+a^{2}+b^{2}\right) \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right| \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{ccc}
1 & 0 & -b \\
0 & 1 & a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|
\end{aligned}
$$

Expanding along R_{1}, we have:

$$
\begin{aligned}
\Delta & =\left(1+a^{2}+b^{2}\right)^{2}\left[(1)\left|\begin{array}{ll}
1 & a \\
-2 a & 1-a^{2}-b^{2}
\end{array}\right|-b\left|\begin{array}{ll}
0 & 1 \\
2 b & -2 a
\end{array}\right|\right] \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left[1-a^{2}-b^{2}+2 a^{2}-b(-2 b)\right] \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left(1+a^{2}+b^{2}\right) \\
& =\left(1+a^{2}+b^{2}\right)^{3}
\end{aligned}
$$

Question 14:

By using properties of determinants, show that:

$$
\left|\begin{array}{lll}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|=1+a^{2}+b^{2}+c^{2}
$$

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\Delta=\left|\begin{array}{lll}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|
$$

Taking out common factors a, b, and c from $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} respectively, we have:

$$
\Delta=a b c\left|\begin{array}{lll}
a+\frac{1}{a} & b & c \\
a & b+\frac{1}{b} & c \\
a & b & c+\frac{1}{c}
\end{array}\right|
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{\mathrm{l}}$, we have:

$$
\Delta=a b c\left|\begin{array}{ccc}
a+\frac{1}{a} & b & c \\
-\frac{1}{a} & \frac{1}{b} & 0 \\
-\frac{1}{a} & 0 & \frac{1}{c}
\end{array}\right|
$$

Applying $\mathrm{C}_{1} \rightarrow a \mathrm{C}_{1}, \mathrm{C}_{2} \rightarrow b \mathrm{C}_{2}$, and $\mathrm{C}_{3} \rightarrow c \mathrm{C}_{3}$, we have:

$$
\begin{aligned}
\Delta & =a b c \times \frac{1}{a b c}\left|\begin{array}{lll}
a^{2}+1 & b^{2} & c^{2} \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right| \\
& =\left|\begin{array}{lll}
a^{2}+1 & b^{2} & c^{2} \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =-1\left|\begin{array}{ll}
b^{2} & c^{2} \\
1 & 0
\end{array}\right|+1\left|\begin{array}{ll}
a^{2}+1 & b^{2} \\
-1 & 1
\end{array}\right| \\
& =-1\left(-c^{2}\right)+\left(a^{2}+1+b^{2}\right)=1+a^{2}+b^{2}+c^{2}
\end{aligned}
$$

EDUCATION CENTRE

Where You Get Complete Knowledge
Hence, the given result is proved.

Question 15:

Choose the correct answer.
Let A be a square matrix of order 3×3, then $|k A|$ is equal to
A. ${ }^{k|A|}$
B. ${ }^{k^{2}|A|}$
C. $k^{3}|A|$
D. ${ }^{3 k|A|}$

Answer: C
A is a square matrix of order 3×3.
Let $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$.
Then, $k A=\left[\begin{array}{lll}k a_{1} & k b_{1} & k c_{1} \\ k a_{2} & k b_{2} & k c_{2} \\ k a_{3} & k b_{3} & k c_{3}\end{array}\right]$.
$\therefore|k A|=\left|\begin{array}{lll}k a_{1} & k b_{1} & k c_{1} \\ k a_{2} & k b_{2} & k c_{2} \\ k a_{3} & k b_{3} & k c_{3}\end{array}\right|$
$=k^{3}\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
(Taking out common factors k from each row)
$=k^{3}|A|$
$\therefore|k A|=k^{3}|A|$
Hence, the correct answer is C.

Question 16:

Which of the following is correct?
A. Determinant is a square matrix.
B. Determinant is a number associated to a matrix.

Where You Get Complete Knowledge
C. Determinant is a number associated to a square matrix.
D. None of these

Answer: C

We know that to every square matrix, $A=[$ aij $]$ of order n. We can associate a number called the determinant of square matrix A, where ${ }^{\text {aij }}=(i, j)^{\text {th }}$ element of A.

Thus, the determinant is a number associated to a square matrix.
Hence, the correct answer is C.

Exercise-4.3

Question 1:

Find area of the triangle with vertices at the point given in each of the following:
(i) $(1,0),(6,0),(4,3)($ ii $)(2,7),(1,1),(10,8)$
(iii) $(-2,-3),(3,2),(-1,-8)$
(i) The area of the triangle with vertices $(1,0),(6,0),(4,3)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{lll}
1 & 0 & 1 \\
6 & 0 & 1 \\
4 & 3 & 1
\end{array}\right| \\
& =\frac{1}{2}[1(0-3)-0(6-4)+1(18-0)] \\
& =\frac{1}{2}[-3+18]=\frac{15}{2} \text { square units }
\end{aligned}
$$

(ii) The area of the triangle with vertices $(2,7),(1,1),(10,8)$ is given by the relation,

Where You Get Complete Knowledge

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
2 & 7 & 1 \\
1 & 1 & 1 \\
10 & 8 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(1-8)-7(1-10)+1(8-10)] \\
& =\frac{1}{2}[2(-7)-7(-9)+1(-2)] \\
& =\frac{1}{2}[-14+63-2]=\frac{1}{2}[-16+63] \\
& =\frac{47}{2} \text { square units }
\end{aligned}
$$

(iii) The area of the triangle with vertices $(-2,-3),(3,2),(-1,-8)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{rrr}
-2 & -3 & 1 \\
3 & 2 & 1 \\
-1 & -8 & 1
\end{array}\right| \\
& =\frac{1}{2}[-2(2+8)+3(3+1)+1(-24+2)] \\
& =\frac{1}{2}[-2(10)+3(4)+1(-22)] \\
& =\frac{1}{2}[-20+12-22] \\
& =-\frac{30}{2}=-15
\end{aligned}
$$

Hence, the area of the triangle is $|-15|=15$ square units.

Question 2:

Show that points

$$
\mathrm{A}(a, b+c), \mathrm{B}(b, c+a), \mathrm{C}(c, a+b) \text { are collinear }
$$

Area of $\triangle \mathrm{ABC}$ is given by the relation,

Where You Get Complete Knowledge

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{lll}
a & b+c & 1 \\
b & c+a & 1 \\
c & a+b & 1
\end{array}\right| \\
& =\frac{1}{2}\left|\begin{array}{ccc}
a & b+c & 1 \\
b-a & a-b & 0 \\
c-a & a-c & 0
\end{array}\right|\left(\text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\right) \\
& =\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}
a & b+c & 1 \\
-1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right| \\
& =\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}
a & b+c & 1 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right|\left(\text { Applying } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}\right) \\
& \left.=0 \quad \text { (All elements of } \mathrm{R}_{3} \text { are } 0\right)
\end{aligned}
$$

Thus, the area of the triangle formed by points A, B, and C is zero.
Hence, the points A, B, and C are collinear.

Question 3:

Find values of k if area of triangle is 4 square units and vertices are
(i) $(k, 0),(4,0),(0,2)($ ii $)(-2,0),(0,4),(0, k)$

We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is the absolute value of the determinant (Δ), where

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

It is given that the area of triangle is 4 square units.
$\therefore \Delta= \pm 4$.
(i) The area of the triangle with vertices $(k, 0),(4,0),(0,2)$ is given by the relation,
$\Delta=\frac{1}{2}\left|\begin{array}{lll}k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right|$
$=\frac{1}{2}[k(0-2)-0(4-0)+1(8-0)]$
$=\frac{1}{2}[-2 k+8]=-k+4$
$\therefore-k+4= \pm 4$

When $-k+4=-4, k=8$.
When $-k+4=4, k=0$.

Hence, $k=0,8$.
(ii) The area of the triangle with vertices $(-2,0),(0,4),(0, k)$ is given by the relation,

$$
\begin{aligned}
& \Delta=\frac{1}{2}\left|\begin{array}{ccc}
-2 & 0 & 1 \\
0 & 4 & 1 \\
0 & k & 1
\end{array}\right| \\
& =\frac{1}{2}[-2(4-k)] \\
& =k-4
\end{aligned}
$$

$\therefore k-4= \pm 4$
When $k-4=-4, k=0$.
When $k-4=4, k=8$.
Hence, $k=0,8$.
Question 4:
(i) Find equation of line joining $(1,2)$ and $(3,6)$ using determinants
(ii) Find equation of line joining $(3,1)$ and $(9,3)$ using determinants
(i) Let $\mathrm{P}(x, y)$ be any point on the line joining points $\mathrm{A}(1,2)$ and $\mathrm{B}(3,6)$. Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$
\begin{aligned}
& \therefore \frac{1}{2}\left|\begin{array}{lll}
1 & 2 & 1 \\
3 & 6 & 1 \\
x & y & 1
\end{array}\right|=0 \\
& \Rightarrow \frac{1}{2}[1(6-y)-2(3-x)+1(3 y-6 x)]=0 \\
& \Rightarrow 6-y-6+2 x+3 y-6 x=0 \\
& \Rightarrow 2 y-4 x=0 \\
& \Rightarrow y=2 x
\end{aligned}
$$

Hence, the equation of the line joining the given points is $y=2 x$.
(ii) Let $\mathrm{P}(x, y)$ be any point on the line joining points $\mathrm{A}(3,1)$ and
$B(9,3)$. Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$
\begin{aligned}
& \therefore \frac{1}{2}\left|\begin{array}{lll}
3 & 1 & 1 \\
9 & 3 & 1 \\
x & y & 1
\end{array}\right|=0 \\
& \Rightarrow \frac{1}{2}[3(3-y)-1(9-x)+1(9 y-3 x)]=0 \\
& \Rightarrow 9-3 y-9+x+9 y-3 x=0 \\
& \Rightarrow 6 y-2 x=0 \\
& \Rightarrow x-3 y=0
\end{aligned}
$$

Hence, the equation of the line joining the given points is $x-3 y=0$.

Question 5:

If area of triangle is 35 square units with vertices $(2,-6),(5,4)$, and $(k, 4)$. Then k is
A. 12
B. -2
C. $-12,-2$
D. $12,-2$

Answer: D

The area of the triangle with vertices $(2,-6),(5,4)$, and $(k, 4)$ is given by the relation,

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
2 & -6 & 1 \\
5 & 4 & 1 \\
k & 4 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(4-4)+6(5-k)+1(20-4 k)] \\
& =\frac{1}{2}[30-6 k+20-4 k] \\
& =\frac{1}{2}[50-10 k] \\
& =25-5 k
\end{aligned}
$$

It is given that the area of the triangle is ± 35.
Therefore, we have:
$\Rightarrow 25-5 k= \pm 35$
$\Rightarrow 5(5-k)= \pm 35$
$\Rightarrow 5-k= \pm 7$

When $5-k=-7, k=5+7=12$.

When $5-k=7, k=5-7=-2$.

Hence, $k=12,-2$.

The correct answer is D.

Exercise-4.4

Question 1:

Write Minors and Cofactors of the elements of following determinants:
(i) $\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right|_{\text {(ii) }}\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$
(i) The given determinant is $\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right|$.

Where You Get Complete Knowledge
Minor of element $a_{i j}$ is $\mathrm{M}_{i j}$
$\therefore \mathrm{M}_{11}=$ minor of element $a_{11}=3$
$\mathrm{M}_{12}=$ minor of element $a_{12}=0$
$\mathrm{M}_{21}=$ minor of element $a_{21}=-4$
$\mathrm{M}_{22}=$ minor of element $a_{22}=2$
Cofactor of $a_{i j}$ is $\mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}$.
$\therefore \mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2}(3)=3$
$\mathrm{A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{3}(0)=0$
$\mathrm{A}_{21}=(-1)^{2+1} \mathrm{M}_{21}=(-1)^{3}(-4)=4$
$\mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{4}(2)=2$
(ii) The given determinant is $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$.

Minor of element $a_{i j}$ is $\mathrm{M}_{i j}$.
$\therefore \mathrm{M}_{11}=$ minor of element $a_{11}=d$
$\mathrm{M}_{12}=$ minor of element $a_{12}=b$
$\mathrm{M}_{21}=$ minor of element $a_{21}=c$
$\mathrm{M}_{22}=$ minor of element $a_{22}=a$

Cofactor of $a_{i j}$ is $\mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}$
$\therefore \mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2}(d)=d$
$\mathrm{A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{3}(b)=-b$
$\mathrm{A}_{21}=(-1)^{2+1} \mathrm{M}_{21}=(-1)^{3}(c)=-c$

Question 2:

(i) $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|_{\text {(ii) }}\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|$
(i) The given determinant is $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$.

By the definition of minors and cofactors, we have:
$\mathrm{M}_{11}=$ minor of $a_{11}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$M_{12}=$ minor of $a_{12}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0$
$\mathrm{M}_{13}=$ minor of $a_{13}=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=0$
$\mathrm{M}_{21}=$ minor of $a_{21}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0$
$\mathrm{M}_{22}=$ minor of $a_{22}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$\mathrm{M}_{23}=$ minor of $a_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0$
$\mathrm{M}_{31}=$ minor of $a_{31}=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|=0$
$\mathrm{M}_{32}=$ minor of $a_{32}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0$

Where You Get Complete Knowledge
$\mathrm{M}_{33}=$ minor of $a_{33}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$\mathrm{A}_{11}=$ cofactor of $a_{11}=(-1)^{1+1} \mathrm{M}_{11}=1$
$\mathrm{A}_{12}=$ cofactor of $a_{12}=(-1)^{1+2} \mathrm{M}_{12}=0$
$\mathrm{A}_{13}=$ cofactor of $a_{13}=(-1)^{1+3} \mathrm{M}_{13}=0$
$\mathrm{A}_{21}=$ cofactor of $a_{21}=(-1)^{2+1} \mathrm{M}_{21}=0$
$\mathrm{A}_{22}=$ cofactor of $a_{22}=(-1)^{2+2} \mathrm{M}_{22}=1$
$\mathrm{A}_{23}=$ cofactor of $a_{23}=(-1)^{2+3} \mathrm{M}_{23}=0$
$\mathrm{A}_{31}=$ cofactor of $a_{31}=(-1)^{3+1} \mathrm{M}_{31}=0$
$\mathrm{A}_{32}=$ cofactor of $a_{32}=(-1)^{3+2} \mathrm{M}_{32}=0$
$\mathrm{A}_{33}=$ cofactor of $a_{33}=(-1)^{3+3} \mathrm{M}_{33}=1$
(ii) The given determinant is $\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|$.

By definition of minors and cofactors, we have:
$\mathrm{M}_{11}=\operatorname{minor}$ of $a_{11}=\left|\begin{array}{cc}5 & -1 \\ 1 & 2\end{array}\right|=10+1=11$
$\mathrm{M}_{12}=$ minor of $a_{12}=\left|\begin{array}{cc}3 & -1 \\ 0 & 2\end{array}\right|=6-0=6$
$\mathrm{M}_{13}=$ minor of $a_{13}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3-0=3$
$\mathrm{M}_{21}=\operatorname{minor}$ of $a_{21}=\left|\begin{array}{ll}0 & 4 \\ 1 & 2\end{array}\right|=0-4=-4$

Where You Get Complete Knowledge
$\mathrm{M}_{22}=\operatorname{minor}$ of $a_{22}=\left|\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right|=2-0=2$
$\mathrm{M}_{23}=$ minor of $a_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1-0=1$
$\mathrm{M}_{31}=$ minor of $a_{31}=\left|\begin{array}{cc}0 & 4 \\ 5 & -1\end{array}\right|=0-20=-20$
$\mathrm{M}_{32}=$ minor of $a_{32}=\left|\begin{array}{cc}1 & 4 \\ 3 & -1\end{array}\right|=-1-12=-13$
$\mathrm{M}_{33}=$ minor of $a_{33}=\left|\begin{array}{ll}1 & 0 \\ 3 & 5\end{array}\right|=5-0=5$
$\mathrm{A}_{11}=$ cofactor of $a_{11}=(-1)^{1+1} \mathrm{M}_{11}=11$
$\mathrm{A}_{12}=$ cofactor of $a_{12}=(-1)^{1+2} \mathrm{M}_{12}=-6$
$\mathrm{A}_{13}=$ cofactor of $a_{13}=(-1)^{1+3} \mathrm{M}_{13}=3$
$\mathrm{A}_{21}=$ cofactor of $a_{21}=(-1)^{2+1} \mathrm{M}_{21}=4$
$\mathrm{A}_{22}=$ cofactor of $a_{22}=(-1)^{2+2} \mathrm{M}_{22}=2$
$\mathrm{A}_{23}=$ cofactor of $a_{23}=(-1)^{2+3} \mathrm{M}_{23}=-1$
$\mathrm{A}_{31}=$ cofactor of $a_{31}=(-1)^{3+1} \mathrm{M}_{31}=-20$
$\mathrm{A}_{32}=$ cofactor of $a_{32}=(-1)^{32} \mathrm{M}_{32}=13$
$\mathrm{A}_{33}=$ cofactor of $a_{33}=(-1)^{3+3} \mathrm{M}_{33}=5$

Question 3:

Using Cofactors of elements of second row, evaluate

$$
\Delta=\left|\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right|
$$

The given determinant is $\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|$.
We have:
$\mathrm{M}_{21}=\left|\begin{array}{ll}3 & 8 \\ 2 & 3\end{array}\right|=9-16=-7$
$\therefore \mathrm{A}_{21}=$ cofactor of $a_{21}=(-1)^{2+1} \mathrm{M}_{21}=7$
$\mathrm{M}_{22}=\left|\begin{array}{ll}5 & 8 \\ 1 & 3\end{array}\right|=15-8=7$
$\therefore \mathrm{A}_{22}=$ cofactor of $a_{22}=(-1)^{2+2} \mathrm{M}_{22}=7$
$\mathrm{M}_{23}=\left|\begin{array}{ll}5 & 3 \\ 1 & 2\end{array}\right|=10-3=7$
$\therefore \mathrm{A}_{23}=$ cofactor of $a_{23}=(-1)^{2+3} \mathrm{M}_{23}=-7$
We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.
$\therefore \Delta=a_{21} \mathrm{~A}_{21}+a_{22} \mathrm{~A}_{22}+a_{23} \mathrm{~A}_{23}=2(7)+0(7)+1(-7)=14-7=7$

Question 4:

Using Cofactors of elements of third column, evaluate $\quad \Delta=\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|$
The given determinant is $\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|$.
We have:
$\mathrm{M}_{13}=\left|\begin{array}{ll}1 & y \\ 1 & z\end{array}\right|=z-y$
$\mathrm{M}_{23}=\left|\begin{array}{ll}1 & x \\ 1 & z\end{array}\right|=z-x$
$\mathrm{M}_{33}=\left|\begin{array}{ll}1 & x \\ 1 & y\end{array}\right|=y-x$
$\therefore \mathrm{A}_{13}=$ cofactor of $a_{13}=(-1)^{1+3} \mathrm{M}_{13}=(z-y)$
$\mathrm{A}_{23}=$ cofactor of $a_{23}=(-1)^{2+3} \mathrm{M}_{23}=-(z-x)=(x-z)$
$\mathrm{A}_{33}=$ cofactor of $a_{33}=(-1)^{3+3} \mathrm{M}_{33}=(y-x)$
We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

$$
\begin{aligned}
\therefore \Delta & =a_{13} \mathrm{~A}_{13}+a_{23} \mathrm{~A}_{23}+a_{33} \mathrm{~A}_{33} \\
& =y z(z-y)+z x(x-z)+x y(y-x) \\
& =y z^{2}-y^{2} z+x^{2} z-x z^{2}+x y^{2}-x^{2} y \\
& =\left(x^{2} z-y^{2} z\right)+\left(y z^{2}-x z^{2}\right)+\left(x y^{2}-x^{2} y\right) \\
& =z\left(x^{2}-y^{2}\right)+z^{2}(y-x)+x y(y-x) \\
& =z(x-y)(x+y)+z^{2}(y-x)+x y(y-x) \\
& =(x-y)\left[z x+z y-z^{2}-x y\right] \\
& =(x-y)[z(x-z)+y(z-x)] \\
& =(x-y)(z-x)[-z+y] \\
& =(x-y)(y-z)(z-x)
\end{aligned}
$$

Hence, $\Delta=(x-y)(y-z)(z-x)$.

Question 5:

$\Delta=$ If $\quad\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ and $\mathrm{A}_{i j}$ is Cofactors of $a_{i j}$, then value of Δ is given by

Where You Get Complete Knowledge
(A) $a_{11} \mathrm{~A}_{31}+a_{12} \mathrm{~A}_{32}+a_{13} \mathrm{~A}_{33}$
(B) $a_{11} \mathrm{~A}_{11}+a_{12} \mathrm{~A}_{21}+a_{13} \mathrm{~A}_{31}$
(C) $a_{21} \mathrm{~A}_{11}+a_{22} \mathrm{~A}_{12}+a_{23} \mathrm{~A}_{13}$
(D) $a_{11} \mathrm{~A}_{11}+a_{21} \mathrm{~A}_{21}+a_{31} \mathrm{~A}_{31}$

Answer: D

We know that:
$\Delta=$ Sum of the product of the elements of a column (or a row) with their corresponding cofactors
$\therefore \Delta=a_{11} \mathrm{~A}_{11}+a_{21} \mathrm{~A}_{21}+a_{31} \mathrm{~A}_{31}$
Hence, the value of Δ is given by the expression given in alternative \mathbf{D}.
The correct answer is D.

Exercise-4.5

Question 1:

Find adjoint of each of the matrices.
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
We have,
$A_{11}=4, A_{12}=-3, A_{21}=-2, A_{22}=1$
$\therefore \operatorname{adj} A=\left[\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right]=\left[\begin{array}{lr}4 & -2 \\ -3 & 1\end{array}\right]$

Question 2:

Find adjoint of each of the matrices.

Where You Get Complete Knowledge
$\left[\begin{array}{lrr}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$

Let $A=\left[\begin{array}{lrr}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$.
We have,
$A_{11}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3-0=3$
$A_{12}=-\left|\begin{array}{ll}2 & 5 \\ -2 & 1\end{array}\right|=-(2+10)=-12$
$A_{13}=\left|\begin{array}{ll}2 & 3 \\ -2 & 0\end{array}\right|=0+6=6$
$A_{21}=-\left|\begin{array}{ll}-1 & 2 \\ 0 & 1\end{array}\right|=-(-1-0)=1$
$A_{22}=\left|\begin{array}{ll}1 & 2 \\ -2 & 1\end{array}\right|=1+4=5$
$A_{23}=-\left|\begin{array}{ll}1 & -1 \\ -2 & 0\end{array}\right|=-(0-2)=2$
$A_{31}=\left|\begin{array}{ll}-1 & 2 \\ 3 & 5\end{array}\right|=-5-6=-11$
$A_{32}=-\left|\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right|=-(5-4)=-1$
$A_{33}=\left|\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right|=3+2=5$
Hence, adj $A=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right]=\left[\begin{array}{lll}3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5\end{array}\right]$.

Question 3:

Verify $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

EDUCATION CENTRE

Where You Get Complete Knowledge
$\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$

$$
A=\left[\begin{array}{rr}
2 & 3 \\
-4 & -6
\end{array}\right]
$$

we have,
$|A|=-12-(-12)=-12+12=0$
$\therefore|A| I=0\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Now,
$A_{11}=-6, A_{12}=4, A_{21}=-3, A_{22}=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{rr}-6 & -3 \\ 4 & 2\end{array}\right]$
Now,

$$
\begin{aligned}
A(\text { adj } A) & =\left[\begin{array}{rr}
2 & 3 \\
-4 & -6
\end{array}\right]\left[\begin{array}{rr}
-6 & -3 \\
4 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
-12+12 & -6+6 \\
24-24 & 12-12
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Also, $(\operatorname{adj} A) A=\left[\begin{array}{rr}-6 & -3 \\ 4 & 2\end{array}\right]\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$

$$
=\left[\begin{array}{cc}
-12+12 & -18+18 \\
8-8 & 12-12
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Hence, $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

Question 4:

Verify $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

$$
\left[\begin{array}{rcr}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]
$$

EDUCATION CENTRE

Where You Get Complete Knowledge
$A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
$|A|=1(0-0)+1(9+2)+2(0-0)=11$
$\therefore|A| I=11\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
Now,
$A_{11}=0, A_{12}=-(9+2)=-11, A_{13}=0$
$A_{21}=-(-3-0)=3, A_{22}=3-2=1, A_{23}=-(0+1)=-1$
$A_{31}=2-0=2, A_{32}=-(-2-6)=8, A_{33}=0+3=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]$
Now,

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{lll}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{llr}
0 & 3 & 2 \\
-11 & 1 & 8 \\
0 & -1 & 3
\end{array}\right] \\
& =\left[\begin{array}{llr}
0+11+0 & 3-1-2 & 2-8+6 \\
0+0+0 & 9+0+2 & 6+0-6 \\
0+0+0 & 3+0-3 & 2+0+9
\end{array}\right] \\
& =\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
\end{aligned}
$$

Also,
$(\operatorname{adj} A) \cdot A=\left[\begin{array}{lll}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]\left[\begin{array}{lcr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$

$$
=\left[\begin{array}{lll}
0+9+2 & 0+0+0 & 0-6+6 \\
-11+3+8 & 11+0+0 & -22-2+24 \\
0-3+3 & 0+0+0 & 0+2+9
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
$$

Hence, $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

Question 5:

EDUCATION CENTRE

Where You Get Complete Knowledge
Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{rr}2 & -2 \\ 4 & 3\end{array}\right]$
Let $A=\left[\begin{array}{rr}2 & -2 \\ 4 & 3\end{array}\right]$.
we have,
$|A|=6+8=14$
Now,
$A_{11}=3, A_{12}=-4, A_{21}=2, A_{22}=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{ll}3 & 2 \\ -4 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}$ adj $A=\frac{1}{14}\left[\begin{array}{ll}3 & 2 \\ -4 & 2\end{array}\right]$
Question 6:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$
Let $A=\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$.
we have,
$|A|=-2+15=13$
Now,
$A_{11}=2, A_{12}=3, A_{21}=-5, A_{22}=-1$
$\therefore \operatorname{adj} A=\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{13}\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]$

Question 7:

Find the inverse of each of the matrices (if it exists).

EDUCATION CENTRE

Where You Get Complete Knowledge
$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$
Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$.
We have,
$|A|=1(10-0)-2(0-0)+3(0-0)=10$
Now,
$A_{11}=10-0=10, A_{12}=-(0-0)=0, A_{13}=0-0=0$
$A_{21}=-(10-0)=-10, A_{22}=5-0=5, A_{23}=-(0-0)=0$
$A_{31}=8-6=2, A_{32}=-(4-0)=-4, A_{33}=2-0=2$
\therefore adj $A=\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{10}\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]$

Question 8:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]$

EDUCATION CENTRE

Where You Get Complete Knowledge
Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]$.
We have,
$|A|=1(-3-0)-0+0=-3$
Now,
$A_{11}=-3-0=-3, A_{12}=-(-3-0)=3, A_{13}=6-15=-9$
$A_{21}=-(0-0)=0, A_{22}=-1-0=-1, A_{23}=-(2-0)=-2$
$A_{31}=0-0=0, A_{32}=-(0-0)=0, A_{33}=3-0=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}$ adj $A=-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]$

Question 9:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$

EDUCATION CENTRE

Where You Get Complete Knowledge
Let $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$.
We have,

$$
\begin{aligned}
|A| & =2(-1-0)-1(4-0)+3(8-7) \\
& =2(-1)-1(4)+3(1) \\
& =-2-4+3 \\
& =-3
\end{aligned}
$$

Now,
$A_{11}=-1-0=-1, A_{12}=-(4-0)=-4, A_{13}=8-7=1$
$A_{21}=-(1-6)=5, A_{22}=2+21=23, A_{23}=-(4+7)=-11$
$A_{31}=0+3=3, A_{32}=-(0-12)=12, A_{33}=-2-4=-6$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\frac{1}{3}\left[\begin{array}{lll}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6\end{array}\right]$

Question 10:

Find the inverse of each of the matrices (if it exists).

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]
$$

EDUCATION CENTRE

Where You Get Complete Knowledge
Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$.
By expanding along C_{1}, we have:
$|A|=1(8-6)-0+3(3-4)=2-3=-1$
Now,
$A_{11}=8-6=2, A_{12}=-(0+9)=-9, A_{13}=0-6=-6$
$A_{21}=-(-4+4)=0, A_{22}=4-6=-2, A_{23}=-(-2+3)=-1$
$A_{31}=3-4=-1, A_{32}=-(-3-0)=3, A_{33}=2-0=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\left[\begin{array}{lll}2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2\end{array}\right]=\left[\begin{array}{lll}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$

Question 11:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$.
We have,
$|A|=1\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)=-\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=-1$
Now,
$A_{11}=-\cos ^{2} \alpha-\sin ^{2} \alpha=-1, A_{12}=0, A_{13}=0$
$A_{21}=0, A_{22}=-\cos \alpha, A_{23}=-\sin \alpha$
$A_{31}=0, A_{32}=-\sin \alpha, A_{33}=\cos \alpha$

EDUCATION CENTRE

Where You Get Complete Knowledge
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=-\left[\begin{array}{lll}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
Question 12:
Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$. Verify that $(A B)^{-1}=B^{-1} A^{-1}$
Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$.
We have,
$|A|=15-14=1$
Now,
$A_{11}=5, A_{12}=-2, A_{21}=-7, A_{22}=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{rr}5 & -7 \\ -2 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=\left[\begin{array}{rr}5 & -7 \\ -2 & 3\end{array}\right]$

EDUCATION CENTRE

Where You Get Complete Knowledge
Now, let $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$.
We have,
$|B|=54-56=-2$
$\therefore \operatorname{adj} B=\left[\begin{array}{rr}9 & -8 \\ -7 & 6\end{array}\right]$
$\therefore B^{-1}=\frac{1}{|B|} \operatorname{adj} B=-\frac{1}{2}\left[\begin{array}{rr}9 & -8 \\ -7 & 6\end{array}\right]=\left[\begin{array}{cc}-\frac{9}{2} & 4 \\ \frac{7}{2} & -3\end{array}\right]$
Now,

$$
\begin{align*}
B^{-1} A^{-1} & =\left[\begin{array}{cc}
-\frac{9}{2} & 4 \\
\frac{7}{2} & -3
\end{array}\right]\left[\begin{array}{rr}
5 & -7 \\
-2 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{45}{2}-8 & \frac{63}{2}+12 \\
\frac{35}{2}+6 & -\frac{49}{2}-9
\end{array}\right]=\left[\begin{array}{cc}
-\frac{61}{2} & \frac{87}{2} \\
\frac{47}{2} & -\frac{67}{2}
\end{array}\right] \tag{1}
\end{align*}
$$

Then,

$$
\begin{aligned}
A B & =\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right]\left[\begin{array}{ll}
6 & 8 \\
7 & 9
\end{array}\right] \\
& =\left[\begin{array}{ll}
18+49 & 24+63 \\
12+35 & 16+45
\end{array}\right] \\
& =\left[\begin{array}{ll}
67 & 87 \\
47 & 61
\end{array}\right]
\end{aligned}
$$

Therefore, we have $|A B|=67 \times 61-87 \times 47=4087-4089=-2$.
Also,

$$
\begin{align*}
& \operatorname{adj}(A B)=\left[\begin{array}{rr}
61 & -87 \\
-47 & 67
\end{array}\right] \\
& \therefore(A B)^{-1}=\frac{1}{|A B|} \operatorname{adj}(A B)
\end{align*}=-\frac{1}{2}\left[\begin{array}{ll}
61 & -87 \\
-47 & 67 \tag{2}
\end{array}\right] .
$$

From (1) and (2), we have:

EDUCATION CENTRE

Where You Get Complete Knowledge
$(A B)^{-1}=B^{-1} A^{-1}$
Hence, the given result is proved.
Question 13:
If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=O$. Hence find A^{-1}.
$A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$
$A^{2}=A \cdot A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}9-1 & 3+2 \\ -3-2 & -1+4\end{array}\right]=\left[\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right]$
$\therefore A^{2}-5 A+7 I$
$=\left[\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right]-5\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]+7\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right]-\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]+\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
$=\left[\begin{array}{ll}-7 & 0 \\ 0 & -7\end{array}\right]+\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Hence, $A^{2}-5 A+7 I=O$.
$\therefore A \cdot A-5 A=-7 I$
$\Rightarrow A \cdot A\left(A^{-1}\right)-5 A A^{-1}=-7 I A^{-1} \quad\left[\right.$ Post-multiplying by A^{-1} as $\left.|A| \neq 0\right]$
$\Rightarrow A\left(A A^{-1}\right)-5 I=-7 A^{-1}$
$\Rightarrow A I-5 I=-7 A^{-1}$
$\Rightarrow A^{-1}=-\frac{1}{7}(A-5 I)$
$\Rightarrow A^{-1}=\frac{1}{7}(5 I-A)$
$=\frac{1}{7}\left(\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]-\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]\right)=\frac{1}{7}\left[\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{7}\left[\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right]$

Question 14:

For the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the numbers a and b such that $A^{2}+a A+b I=O$.

EDUCATION CENTRE

Where You Get Complete Knowledge
$A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$
$\therefore A^{2}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}9+2 & 6+2 \\ 3+1 & 2+1\end{array}\right]=\left[\begin{array}{ll}11 & 8 \\ 4 & 3\end{array}\right]$
Now,
$A^{2}+a A+b I=O$
$\Rightarrow(A A) A^{-1}+a A A^{-1}+b I A^{-1}=O \quad\left[\right.$ Post-multiplying by A^{-1} as $\left.|A| \neq 0\right]$
$\Rightarrow A\left(A A^{-1}\right)+a I+b\left(I A^{-1}\right)=O$
$\Rightarrow A I+a I+b A^{-1}=O$
$\Rightarrow A+a I=-b A^{-1}$
$\Rightarrow A^{-1}=-\frac{1}{b}(A+a I)$
Now,

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{1}\left[\begin{array}{rc}
1 & -2 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right]
$$

We have:

$$
\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right]=-\frac{1}{b}\left(\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]+\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right]\right)=-\frac{1}{b}\left[\begin{array}{ll}
3+a & 2 \\
1 & 1+a
\end{array}\right]=\left[\begin{array}{ll}
\frac{-3-a}{b} & -\frac{2}{b} \\
-\frac{1}{b} & \frac{-1-a}{b}
\end{array}\right]
$$

Comparing the corresponding elements of the two matrices, we have:

$$
\begin{aligned}
& -\frac{1}{b}=-1 \Rightarrow b=1 \\
& \frac{-3-a}{b}=1 \Rightarrow-3-a=1 \Rightarrow a=-4
\end{aligned}
$$

Hence, -4 and 1 are the required values of a and b respectively.

Question 15:

For the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]_{\text {show that }} A^{3}-6 A^{2}+5 A+11 I=\mathrm{O}$. Hence, find A^{-1}.

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \begin{array}{c}
2 \\
-1
\end{array} & \begin{array}{c}
-3 \\
2
\end{array}
\end{array}\right]
$$

$$
A^{2}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
1+1+2 & 1+2-1 & 1-3+3 \\
1+2-6 & 1+4+3 & 1-6-9 \\
2-1+6 & 2-2-3 & 2+3+9
\end{array}\right]=\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]
$$

$$
A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
4+2+2 & 4+4-1 & 4-6+3 \\
-3+8-28 & -3+16+14 & -3-24-42 \\
7-3+28 & 7-6-14 & 7+9+42
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]
$$

EDUCATION CENTRE

Where You Get Complete Knowledge
$\therefore A^{3}-6 A^{2}+5 A+11 I$
$=\left[\begin{array}{ccc}8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58\end{array}\right]-6\left[\begin{array}{ccc}4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14\end{array}\right]+5\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]+11\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58\end{array}\right]-\left[\begin{array}{ccc}24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84\end{array}\right]+\left[\begin{array}{ccc}5 & 5 & 5 \\ 5 & 10 & -15 \\ 10 & -5 & 15\end{array}\right]+\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
$=\left[\begin{array}{ccc}24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84\end{array}\right]-\left[\begin{array}{ccc}24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=O$
Thus, $A^{3}-6 A^{2}+5 A+11 I=O$.
Now,

$$
\begin{align*}
& A^{3}-6 A^{2}+5 A+11 I=O \\
& \left.\Rightarrow(A A A) A^{-1}-6(A A) A^{-1}+5 A A^{-1}+11 L A^{-1}=0 \quad \text { [Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right] \\
& \Rightarrow A A\left(A A^{-1}\right)-6 A\left(A A^{-1}\right)+5\left(A A^{-1}\right)=-11\left(I A^{-1}\right) \\
& \Rightarrow A^{2}-6 A+5 I=-11 A^{-1} \\
& \Rightarrow A^{-1}=-\frac{1}{11}\left(A^{2}-6 A+5 I\right) \quad \ldots \text { (1) } \tag{1}
\end{align*}
$$

EDUCATION CENTRE

Where You Get Complete Knowledge
Now,

$$
\begin{aligned}
& A^{2}-6 A+5 I \\
& =\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]-6\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]+5\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]-\left[\begin{array}{ccc}
6 & 6 & 6 \\
6 & 12 & -18 \\
12 & -6 & 18
\end{array}\right]+\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9 & 2 & 1 \\
-3 & 13 & -14 \\
7 & -3 & 19
\end{array}\right]-\left[\begin{array}{ccc}
6 & 6 & 6 \\
6 & 12 & -18 \\
12 & -6 & 18
\end{array}\right] \\
& =\left[\begin{array}{lll}
3 & -4 & -5 \\
-9 & 1 & 4 \\
-5 & 3 & 1
\end{array}\right]
\end{aligned}
$$

From equation (1), we have:

$$
A^{-1}=-\frac{1}{11}\left[\begin{array}{lll}
3 & -4 & -5 \\
-9 & 1 & 4 \\
-5 & 3 & 1
\end{array}\right]=\frac{1}{11}\left[\begin{array}{lll}
-3 & 4 & 5 \\
9 & -1 & -4 \\
5 & -3 & -1
\end{array}\right]
$$

Question 16:

If $A=\left[\begin{array}{ccr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]_{\text {verify that } A^{3}-6 A^{2}+9 A-4 I=O \text { and hence find } A^{-1}}$

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccl}
4+1+1 & -2-2-1 & 2+1+2 \\
-2-2-1 & 1+4+1 & -1-2-2 \\
2+1+2 & -1-2-2 & 1+1+4
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right] \\
& A^{3}=A^{2} A=\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]\left[\begin{array}{ccr}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
12+5+5 & -6-10-5 & 6+5+10 \\
-10-6-5 & 5+12+5 & -5-6-10 \\
10+5+6 & -5-10-6 & 5+5+12
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]
\end{aligned}
$$

EDUCATION CENTRE

Where You Get Complete Knowledge
Now,

$$
\begin{aligned}
& A^{3}-6 A^{2}+9 A-4 I \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-6\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]+9\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]-4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-\left[\begin{array}{ccc}
36 & -30 & 30 \\
-30 & 36 & -30 \\
30 & -30 & 36
\end{array}\right]+\left[\begin{array}{ccc}
18 & -9 & 9 \\
-9 & 18 & -9 \\
9 & -9 & 18
\end{array}\right]-\left[\begin{array}{cc}
4 & 0 \\
0 & 4 \\
0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]-\left[\begin{array}{ccc}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$\therefore A^{3}-6 A^{2}+9 A-4 I=O$
Now,

$$
\begin{align*}
& A^{3}-6 A^{2}+9 A-4 I=O \\
& \Rightarrow A A\left(A A^{-1}\right)-6 A\left(A A^{-1}\right)+9\left(A A^{-1}\right)=4\left(I A^{-1}\right) \\
& \Rightarrow A A I-6 A I+9 I=4 A^{-1} \\
& \Rightarrow A^{2}-6 A+9 I=4 A^{-1} \\
& \Rightarrow A^{-1}=\frac{1}{4}\left(A^{2}-6 A+9 I\right) \tag{1}\\
& A^{2}-6 A+9 I \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-\left[\begin{array}{ccc}
12 & -6 & 6 \\
-6 & 12 & -6 \\
6 & -6 & 12
\end{array}\right]+\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
\end{align*}
$$

From equation (1), we have:

EDUCATION CENTRE

Where You Get Complete Knowledge
$A^{-1}=\frac{1}{4}\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$

Question 17:

Let A be a nonsingular square matrix of order 3×3. Then $|\operatorname{adj} A|$ is equal to
A. $|A|$
B. ${ }^{\mid}$
C. $|A|$
D. ${ }^{3|A|}$

Answer: B

We know that,

$$
\begin{aligned}
& (\operatorname{adj} A) A=|A| I=\left[\begin{array}{lll}
|A| & 0 & 0 \\
0 & |A| & 0 \\
0 & 0 & |A|
\end{array}\right] \\
& \Rightarrow|(\operatorname{adj} A) A|=\left|\begin{array}{lll}
|A| & 0 & 0 \\
0 & |A| & 0 \\
0 & 0 & |A|
\end{array}\right| \\
& \Rightarrow|\operatorname{adj} A||A|=|A|^{3}\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=|A|^{3}(I) \\
& \therefore|\operatorname{adj} A|=|A|^{2}
\end{aligned}
$$

Hence, the correct answer is B.

Question 18:

If A is an invertible matrix of order 2 , then $\operatorname{det}\left(A^{-1}\right)$ is equal to
A. $\operatorname{det}(A)$
B. $\frac{1}{\operatorname{det}(A)}$
C. 1 D. 0

Since A is an invertible matrix,

$$
A^{-1} \text { exists and } A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

EDUCATION CENTRE

Where You Get Complete Knowledge
As matrix A is of order 2, let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
Then, $|A|=a d-b c$ and $a d j A=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
Now,

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\left[\begin{array}{cc}
\frac{d}{|A|} & \frac{-b}{|A|} \\
\frac{-c}{|A|} & \frac{a}{|A|}
\end{array}\right]
$$

$\therefore\left|A^{-1}\right|=\left|\begin{array}{cc}\frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|}\end{array}\right|=\frac{1}{|A|^{2}}\left|\begin{array}{cc}d & -b \\ -c & a \mid\end{array}\right|=\frac{1}{|A|^{2}}(a d-b c)=\frac{1}{|A|^{2}} \cdot|A|=\frac{1}{|A|}$
$\therefore \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$

Hence, the correct answer is B.

Exercise-4.6

Question 1:

Examine the consistency of the system of equations.
$x+2 y=2$
$2 x+3 y=3$
The given system of equations is:
$x+2 y=2$
$2 x+3 y=3$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
Now,
$|A|=1(3)-2(2)=3-4=-1 \neq 0$
$\therefore A$ is non-singular.

Therefore, A^{-1} exists.

Hence, the given system of equations is consistent.

Question 2:

Examine the consistency of the system of equations.
$2 x-y=5$
$x+y=4$
The given system of equations is:
$2 x-y=5$
$x+y=4$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 4\end{array}\right]$.
Now,
$|A|=2(1)-(-1)(1)=2+1=3 \neq 0$
$\therefore A$ is non-singular.
Therefore, A^{-1} exists.

Hence, the given system of equations is consistent.

Question 3:

Examine the consistency of the system of equations.

EDUCATION CENTRE

Where You Get Complete Knowledge
$x+3 y=5$
$2 x+6 y=8$

The given system of equations is:
$x+3 y=5$
$2 x+6 y=8$

The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 8\end{array}\right]$.
Now,
$|A|=1(6)-3(2)=6-6=0$
$\therefore A$ is a singular matrix.
Now,
$(\operatorname{adj} A)=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]$
$(\operatorname{adj} A) B=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]\left[\begin{array}{l}5 \\ 8\end{array}\right]=\left[\begin{array}{l}30-24 \\ -10+8\end{array}\right]=\left[\begin{array}{l}6 \\ -2\end{array}\right] \neq O$

Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question 4:

Examine the consistency of the system of equations.
$x+y+z=1$
$2 x+3 y+2 z=2$
$a x+a y+2 a z=4$

The given system of equations is:

EDUCATION CENTRE

Where You Get Complete Knowledge
$x+y+z=1$
$2 x+3 y+2 z=2$
$a x+a y+2 a z=4$

This system of equations can be written in the form $A X=B$, where
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2 a\end{array}\right], X=\left[\begin{array}{c}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$.
Now,

$$
\begin{aligned}
|A| & =1(6 a-2 a)-1(4 a-2 a)+1(2 a-3 a) \\
& =4 a-2 a-a=4 a-3 a=a \neq 0
\end{aligned}
$$

$\therefore A$ is non-singular.

Therefore, A^{-1} exists.

Hence, the given system of equations is consistent.

Question 5:

Examine the consistency of the system of equations.
$3 x-y-2 z=2$
$2 y-z=-1$
$3 x-5 y=3$

The given system of equations is:
$3 x-y-2 z=2$
$2 y-z=-1$
$3 x-5 y=3$

This system of equations can be written in the form of $A X=B$, where

EDUCATION CENTRE

Where You Get Complete Knowledge
$A=\left[\begin{array}{lll}3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{r}2 \\ -1 \\ 3\end{array}\right]$.
Now,
$|A|=3(0-5)-0+3(1+4)=-15+15=0$
$\therefore A$ is a singular matrix.
Now,
$($ adj $A)=\left[\begin{array}{lll}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]$
$\therefore($ adj $A) B=\left[\begin{array}{lll}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]=\left[\begin{array}{l}-10-10+15 \\ -6-6+9 \\ -12-12+18\end{array}\right]=\left[\begin{array}{l}-5 \\ -3 \\ -6\end{array}\right] \neq O$
Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question 6:

Examine the consistency of the system of equations.
$5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=-1$
The given system of equations is:
$5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=-1$
This system of equations can be written in the form of $A X=B$, where

EDUCATION CENTRE

Where You Get Complete Knowledge
$A=\left[\begin{array}{lll}5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}5 \\ 2 \\ -1\end{array}\right]$.
Now,
$|A|=5(18+10)+1(12-25)+4(-4-15)$
$=5(28)+1(-13)+4(-19)$
$=140-13-76$
$=51 \neq 0$
$\therefore A$ is non-singular.

Therefore, A^{-1} exists.

Hence, the given system of equations is consistent.

Question 7:

Solve system of linear equations, using matrix method.
$5 x+2 y=4$
$7 x+3 y=5$

The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
Now, $|A|=15-14=1 \neq 0$.

Thus, A is non-singular. Therefore, its inverse exists.

Where You Get Complete Knowledge
Now,
$A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$
$\therefore A^{-1}=\left[\begin{array}{rr}3 & -2 \\ -7 & 5\end{array}\right]$
$\therefore X=A^{-1} B=\left[\begin{array}{rr}3 & -2 \\ -7 & 5\end{array}\right]\left[\begin{array}{l}4 \\ 5\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}12-10 \\ -28+25\end{array}\right]=\left[\begin{array}{c}2 \\ -3\end{array}\right]$
Hence, $x=2$ and $y=-3$.

Question 8:

Solve system of linear equations, using matrix method.
$2 x-y=-2$
$3 x+4 y=3$

The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}2 & -1 \\ 3 & 4\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$.
Now,
$|A|=8+3=11 \neq 0$

Thus, A is non-singular. Therefore, its inverse exists.

Now,
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-8+3 \\ 6+6\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-5 \\ 12\end{array}\right]=\left[\begin{array}{c}-\frac{5}{11} \\ \frac{12}{11}\end{array}\right]$
Hence, $x=\frac{-5}{11}$ and $y=\frac{12}{11}$.

Question 9:

Solve system of linear equations, using matrix method.
$4 x-3 y=3$
$3 x-5 y=7$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}4 & -3 \\ 3 & -5\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 7\end{array}\right]$.
Now,
$|A|=-20+9=-11 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.

Where You Get Complete Knowledge
Now,
$A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=-\frac{1}{11}\left[\begin{array}{ll}-5 & 3 \\ -3 & 4\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}3 \\ 7\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}3 \\ 7\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}15-21 \\ 9-28\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-6 \\ -19\end{array}\right]=\left[\begin{array}{l}-\frac{6}{11} \\ -\frac{19}{11}\end{array}\right]$
Hence, $x=\frac{-6}{11}$ and $y=\frac{-19}{11}$.

Question 10:

Solve system of linear equations, using matrix method.
$5 x+2 y=3$
$3 x+2 y=5$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
Now,
$|A|=10-6=4 \neq 0$

Thus, A is non-singular. Therefore, its inverse exists.

Question 11:

Solve system of linear equations, using matrix method.
$2 x+y+z=1$
$x-2 y-z=\frac{3}{2}$
$3 y-5 z=9$

The given system of equations can be written in the form of $A X=B$, where

EDUCATION CENTRE

Where You Get Complete Knowledge
$A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}1 \\ \frac{3}{2} \\ 9\end{array}\right]$.
Now,

$$
|A|=2(10+3)-1(-5-3)+0=2(13)-1(-8)=26+8=34 \neq 0
$$

Thus, A is non-singular. Therefore, its inverse exists.
Now, $A_{11}=13, A_{12}=5, A_{13}=3$

$$
A_{21}=8, A_{22}=-10, A_{23}=-6
$$

$$
A_{31}=1, A_{32}=3, A_{33}=-5
$$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{34}\left[\begin{array}{llc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]\left[\begin{array}{l}1 \\ \frac{3}{2} \\ 9\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{34}\left[\begin{array}{l}13+12+9 \\ 5-15+27 \\ 3-9-45\end{array}\right]$

$$
=\frac{1}{34}\left[\begin{array}{l}
34 \\
17 \\
-51
\end{array}\right]=\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
-\frac{3}{2}
\end{array}\right]
$$

Hence, $x=1, y=\frac{1}{2}$, and $z=-\frac{3}{2}$.

Question 12:

Solve system of linear equations, using matrix method.
$x-y+z=4$

EDUCATION CENTRE

Where You Get Complete Knowledge
$2 x+y-3 z=0$
$x+y+z=2$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$.
Now,

$$
|A|=1(1+3)+1(2+3)+1(2-1)=4+5+1=10 \neq 0
$$

Thus, A is non-singular. Therefore, its inverse exists.
Now, $A_{11}=4, A_{12}=-5, A_{13}=1$

$$
\begin{aligned}
& A_{21}=2, A_{22}=0, A_{23}=-2 \\
& A_{31}=2, A_{32}=5, A_{33}=3
\end{aligned}
$$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}16+0+4 \\ -20+0+10 \\ 4+0+6\end{array}\right]$
$=\frac{1}{10}\left[\begin{array}{c}20 \\ -10 \\ 10\end{array}\right]$

$$
=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

Hence, $x=2, y=-1$, and $z=1$.

Question 13:

EDUCATION CENTRE

Where You Get Complete Knowledge
Solve system of linear equations, using matrix method.
$2 x+3 y+3 z=5$
$x-2 y+z=-4$
$3 x-y-2 z=3$

The given system of equations can be written in the form $A X=B$, where
$A=\left[\begin{array}{ccc}2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ -4 \\ 3\end{array}\right]$.
Now,
$|A|=2(4+1)-3(-2-3)+3(-1+6)=2(5)-3(-5)+3(5)=10+15+15=40 \neq 0$

Thus, A is non-singular. Therefore, its inverse exists.

Now, $A_{11}=5, A_{12}=5, A_{13}=5$

$$
A_{21}=3, A_{22}=-13, A_{23}=11
$$

$$
A_{31}=9, A_{32}=1, A_{33}=-7
$$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{40}\left[\begin{array}{ccc}5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7\end{array}\right]$

EDUCATION CENTRE

Where You Get Complete Knowledge

$$
\begin{aligned}
\therefore X & =A^{-1} B=\frac{1}{40}\left[\begin{array}{lcc}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7
\end{array}\right]\left[\begin{array}{l}
5 \\
-4 \\
3
\end{array}\right] \\
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] & =\frac{1}{40}\left[\begin{array}{l}
25-12+27 \\
25+52+3 \\
25-44-21
\end{array}\right] \\
& =\frac{1}{40}\left[\begin{array}{l}
40 \\
80 \\
-40
\end{array}\right] \\
& =\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]
\end{aligned}
$$

Hence, $x=1, y=2$, and $z=-1$.

Question 14:

Solve system of linear equations, using matrix method.
$x-y+2 z=7$
$3 x+4 y-5 z=-5$
$2 x-y+3 z=12$

The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$.
Now,
$|A|=1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0$

Thus, A is non-singular. Therefore, its inverse exists.

Where You Get Complete Knowledge
Now, $A_{11}=7, A_{12}=-19, A_{13}=-11$

$$
\begin{aligned}
& A_{21}=1, A_{22}=-1, A_{23}=-1 \\
& A_{31}=-3, A_{32}=11, A_{33}=7
\end{aligned}
$$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]\left[\begin{array}{l}7 \\ -5 \\ 12\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}49-5-36 \\ -133+5+132 \\ -77+5+84\end{array}\right]$
$=\frac{1}{4}\left[\begin{array}{l}8 \\ 4 \\ 12\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$
Hence, $x=2, y=1$, and $z=3$.

Question 15:

If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find A^{-1}. Using A^{-1} solve the system of equations

$$
\begin{aligned}
2 x-3 y+5 z & =11 \\
3 x+2 y-4 z & =-5 \\
x+y-2 z & =-3
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]
$$

$$
\therefore|A|=2(-4+4)+3(-6+4)+5(3-2)=0-6+5=-1 \neq 0
$$

Now, $A_{11}=0, A_{12}=2, A_{13}=1$

$$
\begin{aligned}
& A_{21}=-1, A_{22}=-9, A_{23}=-5 \\
& A_{31}=2, A_{32}=23, A_{33}=13
\end{aligned}
$$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=-\left[\begin{array}{lll}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]$
Now, the given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right], X=\left[\begin{array}{c}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right]$.
The solution of the system of equations is given by $X=A^{-1} B$.
$X=A^{-1} B$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right] \quad[$ Using (1)]
$=\left[\begin{array}{c}0-5+6 \\ -22-45+69 \\ -11-25+39\end{array}\right]$
$=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
Hence, $x=1, y=2$, and $z=3$.

Question 16:

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60 . The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90 . The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70 . Find cost of each item per kg by matrix method.

Let the cost of onions, wheat, and rice per kg be Rs x, Rs y, and Rs z respectively.
Then, the given situation can be represented by a system of equations as:

EDUCATION CENTRE

Where You Get Complete Knowledge
$4 x+3 y+2 z=60$
$2 x+4 y+6 z=90$
$6 x+2 y+3 z=70$
This system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3\end{array}\right], X=\left[\begin{array}{c}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}60 \\ 90 \\ 70\end{array}\right]$.
$|A|=4(12-12)-3(6-36)+2(4-24)=0+90-40=50 \neq 0$
Now, $\quad A_{11}=0, A_{12}=30, A_{13}=-20$

$$
A_{21}=-5, A_{22}=0, A_{23}=10
$$

$$
A_{31}=10, A_{32}=-20, A_{33}=10
$$

$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{50}\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right]$

Now,
$X=A^{-1} B$

Where You Get Complete Knowledge

$$
\begin{aligned}
& \Rightarrow X=\frac{1}{50}\left[\begin{array}{ccc}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10
\end{array}\right]\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{50}\left[\begin{array}{l}
0-450+700 \\
1800+0-1400 \\
-1200+900+700
\end{array}\right] \\
& \\
& =\frac{1}{50}\left[\begin{array}{l}
250 \\
400 \\
400
\end{array}\right] \\
& \quad=\left[\begin{array}{l}
5 \\
8 \\
8
\end{array}\right] \\
& \therefore x=5, y=8, \text { and } z=8 .
\end{aligned}
$$

Hence, the cost of onions is Rs 5 per kg, the cost of wheat is Rs 8 per kg , and the cost of rice is Rs 8 per kg .

