

Exercise-11.1

Question 1:

If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.

Let direction cosines of the line be *l*, *m*, and *n*.

$$l = \cos 90^\circ = 0$$
$$m = \cos 135^\circ = -\frac{1}{\sqrt{2}}$$
$$n = \cos 45^\circ = \frac{1}{\sqrt{2}}$$

Therefore, the direction cosines of the line are

$$0, -\frac{1}{\sqrt{2}}, \text{ and } \frac{1}{\sqrt{2}}.$$

Question 2:

Find the direction cosines of a line which makes equal angles with the coordinate axes.

Let the direction cosines of the line make an angle α with each of the coordinate axes.

```
\therefore l = \cos \alpha, m = \cos \alpha, n = \cos \alpha
```

$$l^{2} + m^{2} + n^{2} = 1$$

$$\Rightarrow \cos^{2} \alpha + \cos^{2} \alpha + \cos^{2} \alpha = 1$$

$$\Rightarrow 3\cos^{2} \alpha = 1$$

$$\Rightarrow \cos^{2} \alpha = \frac{1}{3}$$

$$\Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{3}}$$

Thus, the direction cosines of the line, which is equally inclined to the coordinate axes,

$$\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \text{ and } \pm \frac{1}{\sqrt{3}}.$$

Question 3:

If a line has the direction ratios -18, 12, -4, then what are its direction cosines?

If a line has direction ratios of -18, 12, and -4, then its direction cosines are

 $\frac{-18}{\sqrt{\left(-18\right)^2 + \left(12\right)^2 + \left(-4\right)^2}}, \frac{12}{\sqrt{\left(-18\right)^2 + \left(-2\right)^2}}, \frac{-4}{\sqrt{\left(-18\right)^2 + \left(12\right)^2 + \left(-4\right)^2}}$ i.e., $\frac{-18}{22}, \frac{12}{22}, \frac{-4}{22}$ $\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}$

Thus, the direction cosines are $-\frac{9}{11}$, $\frac{6}{11}$, and $\frac{-2}{11}$.

Question 4:

Show that the points (2, 3, 4), (-1, -2, 1), (5, 8, 7) are collinear.

The given points are A (2, 3, 4), B (-1, -2, 1), and C (5, 8, 7).

It is known that the direction ratios of line joining the points, (x_1, y_1, z_1) and (x_2, y_2, z_2) , are given by, $x_2 - x_1$, $y_2 - y_1$, and $z_2 - z_1$.

The direction ratios of AB are (-1 - 2), (-2 - 3), and (1 - 4) i.e., -3, -5, and -3.

The direction ratios of BC are (5 - (-1)), (8 - (-2)), and (7 - 1) i.e., 6, 10, and 6.

It can be seen that the direction ratios of BC are -2 times that of AB i.e., they are proportional.

Therefore, AB is parallel to BC. Since point B is common to both AB and BC, points A, B, and C are collinear.

Question 5:

Find the direction cosines of the sides of the triangle whose vertices are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2)

The vertices of \triangle ABC are A (3, 5, -4), B (-1, 1, 2), and C (-5, -5, -2).

The direction ratios of side AB are (-1 - 3), (1 - 5), and (2 - (-4)) i.e., -4, -4, and 6.

Then,
$$\sqrt{(-4)^2 + (-4)^2 + (6)^2} = \sqrt{16 + 16 + 36}$$

= $\sqrt{68}$
= $2\sqrt{17}$

Therefore, the direction cosines of AB are

$$\frac{-4}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{6}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}$$
$$\frac{-4}{2\sqrt{17}}, -\frac{4}{2\sqrt{17}}, \frac{6}{2\sqrt{17}}$$
$$\frac{-2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}$$

The direction ratios of BC are (-5 - (-1)), (-5 - 1), and (-2 - 2) i.e., -4, -6, and -4.

Therefore, the direction cosines of BC are

$$\frac{-4}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-6}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}$$

The direction ratios of CA are (-5 - 3), (-5 - 5), and (-2 - (-4)) i.e., -8, -10, and 2. Therefore, the direction cosines of AC are

Question 1:

Show that the three lines with direction cosines

 $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.

Two lines with direction cosines, l_1 , m_1 , n_1 and l_2 , m_2 , n_2 , are perpendicular to each other, if $l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$

(i) For the lines with direction cosines, $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$ and $\frac{4}{13}, \frac{12}{13}, \frac{3}{13}$, we obtain

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = \frac{12}{13} \times \frac{4}{13} + \left(\frac{-3}{13}\right) \times \frac{12}{13} + \left(\frac{-4}{13}\right) \times \frac{3}{13}$$
$$= \frac{48}{169} - \frac{36}{169} - \frac{12}{169}$$
$$= 0$$

Therefore, the lines are perpendicular.

(ii) For the lines with direction cosines, $\frac{4}{13}$, $\frac{12}{13}$, $\frac{3}{13}$ and $\frac{3}{13}$, $\frac{-4}{13}$, $\frac{12}{13}$, we obtain

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = \frac{4}{13} \times \frac{3}{13} + \frac{12}{13} \times \left(\frac{-4}{13}\right) + \frac{3}{13} \times \frac{12}{13}$$
$$= \frac{12}{169} - \frac{48}{169} + \frac{36}{169}$$
$$= 0$$

Therefore, the lines are perpendicular.

(iii) For the lines with direction cosines, $\overline{13}$, $\overline{13}$, $\overline{13}$ and $\overline{13}$, $\overline{13}$, $\overline{13}$, we obtain

$$\begin{split} l_1 l_2 + m_1 m_2 + n_1 n_2 &= \left(\frac{3}{13}\right) \times \left(\frac{12}{13}\right) + \left(\frac{-4}{13}\right) \times \left(\frac{-3}{13}\right) + \left(\frac{12}{13}\right) \times \left(\frac{-4}{13}\right) \\ &= \frac{36}{169} + \frac{12}{169} - \frac{48}{169} \\ &= 0 \end{split}$$

Therefore, the lines are perpendicular.

Thus, all the lines are mutually perpendicular.

Question 2:

Show that the line through the points (1, -1, 2) (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Let AB be the line joining the points, (1, -1, 2) and (3, 4, -2), and CD be the line joining the points, (0, 3, 2) and (3, 5, 6).

The direction ratios, a_1 , b_1 , c_1 , of AB are (3 - 1), (4 - (-1)), and (-2 - 2) i.e., 2, 5, and -4.

The direction ratios, a_2 , b_2 , c_2 , of CD are (3 - 0), (5 - 3), and (6 - 2) i.e., 3, 2, and 4.

AB and CD will be perpendicular to each other, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$

 $a_1a_2 + b_1b_2 + c_1c_2 = 2 \times 3 + 5 \times 2 + (-4) \times 4$

= 6 + 10 - 16

= 0

Therefore, AB and CD are perpendicular to each other.

Question 3:

Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (-1, -2, 1), (1, 2, 5).

Let AB be the line through the points, (4, 7, 8) and (2, 3, 4), and CD be the line through the points, (-1, -2, 1) and (1, 2, 5).

The directions ratios, a_1 , b_1 , c_1 , of AB are (2 - 4), (3 - 7), and (4 - 8) i.e., -2, -4, and -4.

The direction ratios, a_2 , b_2 , c_2 , of CD are (1 - (-1)), (2 - (-2)), and (5 - 1) i.e., 2, 4, and 4.

AB will be parallel to CD, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

$$\frac{a_1}{a_2} = \frac{-2}{2} = -1$$

$$\frac{b_1}{b_2} = \frac{-4}{4} = -1$$

$$\frac{c_1}{c_2} = \frac{-4}{4} = -1$$

$$\therefore \quad \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Thus, AB is parallel to CD.

Question 4:

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3\hat{i} + 2\hat{j} - 2\hat{k}$.

It is given that the line passes through the point A (1, 2, 3). Therefore, the position vector through A is $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$

 $\vec{b} = 3\hat{i} + 2\hat{j} - 2\hat{k}$

It is known that the line which passes through point A and parallel to \vec{b} is given by $\vec{r} = \vec{a} + \lambda \vec{b}$, where λ is a constant.

$$\Rightarrow \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda\left(3\hat{i} + 2\hat{j} - 2\hat{k}\right)$$

This is the required equation of the line.

Question 5:

EDUCATION CENTRE

Where You Get Complete Knowledge

Find the equation of the line in vector and in Cartesian form that passes through the point with position vector $2\hat{i} - \hat{j} + 4\hat{k}$ and is in the direction $\hat{i} + 2\hat{j} - \hat{k}$.

It is given that the line passes through the point with position vector

$$\vec{a} = 2\hat{i} - \hat{j} + 4\hat{k} \qquad \dots(1)$$

 $\vec{b} = \hat{i} + 2\hat{j} - \hat{k} \qquad \dots (2)$

It is known that a line through a point with position vector \vec{a} and parallel to \vec{b} is given by the equation, $\vec{r} = \vec{a} + \lambda \vec{b}$

$$\Rightarrow \vec{r} = 2\hat{i} - \hat{j} + 4\hat{k} + \lambda\left(\hat{i} + 2\hat{j} - \hat{k}\right)$$

This is the required equation of the line in vector form.

$$\vec{r} = x\hat{i} - y\hat{j} + z\hat{k}$$
$$\Rightarrow x\hat{i} - y\hat{j} + z\hat{k} = (\lambda + 2)\hat{i} + (2\lambda - 1)\hat{j} + (-\lambda + 4)\hat{k}$$

Eliminating λ , we obtain the Cartesian form equation as

$$\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-4}{-1}$$

This is the required equation of the given line in Cartesian form.

Question 6:

Find the Cartesian equation of the line which passes through the point

(-2, 4, -5) and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$

It is given that the line passes through the point (-2, 4, -5) and is parallel to $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$

$$\frac{x+3}{2} = \frac{y-4}{5} = \frac{z+8}{5}$$

The direction ratios of the line, $3 \quad 5 \quad 6$, are 3, 5, and 6.

 $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$

The required line is parallel to $\frac{3}{5} = \frac{5}{5} = \frac{1}{5}$

Therefore, its direction ratios are 3k, 5k, and 6k, where $k \neq 0$

It is known that the equation of the line through the point (x_1, y_1, z_1) and with direction ratios, *a*,*b*, *c*, is given by $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$

Therefore the equation of the required line is

$$\frac{x+2}{3k} = \frac{y-4}{5k} = \frac{z+5}{6k}$$
$$\Rightarrow \frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6} = k$$

Question 7:

The Cartesian equation of a line is $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$. Write its vector form.

The Cartesian equation of the line is

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2} \qquad \dots (1)$$

The given line passes through the point (5, -4, 6). The position vector of this point is $\vec{a} = 5\hat{i} - 4\hat{j} + 6\hat{k}$

Also, the direction ratios of the given line are 3, 7, and 2.

This means that the line is in the direction of vector, $\vec{b} = 3\hat{i} + 7\hat{j} + 2\hat{k}$

It is known that the line through position vector \vec{a} and in the direction of the vector \vec{b} is given by the equation, $\vec{r} = \vec{a} + \lambda \vec{b}, \lambda \in R$

$$\Rightarrow \vec{r} = \left(5\hat{i} - 4\hat{j} + 6\hat{k}\right) + \lambda\left(3\hat{i} + 7\hat{j} + 2\hat{k}\right)$$

This is the required equation of the given line in vector form.

Question 8:

Find the vector and the Cartesian equations of the lines that pass through the origin and (5, -2, 3).

The required line passes through the origin. Therefore, its position vector is given by,

$$\vec{a} = \vec{0}$$
 ... (1)

The direction ratios of the line through origin and (5, -2, 3) are

$$(5-0) = 5, (-2-0) = -2, (3-0) = 3$$

The line is parallel to the vector given by the equation, $\vec{b} = 5\hat{i} - 2\hat{j} + 3\hat{k}$

The equation of the line in vector form through a point with position vector \vec{a} and parallel to \vec{b} is, $\vec{r} = \vec{a} + \lambda \vec{b}$, $\lambda \in R$

$$\Rightarrow \vec{r} = \vec{0} + \lambda \left(5\hat{i} - 2\hat{j} + 3\hat{k} \right)$$
$$\Rightarrow \vec{r} = \lambda \left(5\hat{i} - 2\hat{j} + 3\hat{k} \right)$$

The equation of the line through the point (x_1, y_1, z_1) and direction ratios a, b, c is given

by,
$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

Therefore, the equation of the required line in the Cartesian form is

$$\frac{x-0}{5} = \frac{y-0}{-2} = \frac{z-0}{3}$$
$$\Rightarrow \frac{x}{5} = \frac{y}{-2} = \frac{z}{3}$$

Question 9:

Find the vector and the Cartesian equations of the line that passes through the points (3, -2, -5), (3, -2, 6).

Let the line passing through the points, P (3, -2, -5) and Q (3, -2, 6), be PQ.

Since PQ passes through P (3, -2, -5), its position vector is given by,

$$\vec{a}=3\hat{i}-2\hat{j}-5\hat{k}$$

The direction ratios of PQ are given by,

$$(3-3) = 0, (-2+2) = 0, (6+5) = 11$$

The equation of the vector in the direction of PQ is

$$\vec{b} = 0.\hat{i} - 0.\hat{j} + 11\hat{k} = 11\hat{k}$$

The equation of PQ in vector form is given by, $\vec{r} = \vec{a} + \lambda \vec{b}$, $\lambda \in R$

$$\Rightarrow \vec{r} = \left(3\hat{i} - 2\hat{j} - 5\hat{k}\right) + 11\lambda\hat{k}$$

The equation of PQ in Cartesian form is

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$
 i.e.,
$$\frac{x - 3}{0} = \frac{y + 2}{0} = \frac{z + 5}{11}$$

Question 10:

Find the angle between the following pairs of lines:

(i)
$$\vec{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda (3\hat{i} - 2\hat{j} + 6\hat{k})$$
 and
 $\vec{r} = 7\hat{i} - 6\hat{k} + \mu (\hat{i} + 2\hat{j} + 2\hat{k})$
(ii) $\vec{r} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda (\hat{i} - \hat{j} - 2\hat{k})$ and
 $\vec{r} = 2\hat{i} - \hat{j} - 56\hat{k} + \mu (3\hat{i} - 5\hat{j} - 4\hat{k})$

(i) Let Q be the angle between the given lines.

$$\cos Q = \left| \frac{\vec{b}_1 \cdot \vec{b}_2}{\left| \vec{b}_1 \right| \left| \vec{b}_2 \right|} \right|$$

The angle between the given pairs of lines is given by,

The given lines are parallel to the vectors, $\vec{b}_1 = 3\hat{i} + 2\hat{j} + 6\hat{k}$ and $\vec{b}_2 = \hat{i} + 2\hat{j} + 2\hat{k}$, respectively.

$$\begin{aligned} \therefore \left| \vec{b_1} \right| &= \sqrt{3^2 + 2^2 + 6^2} = 7 \\ \left| \vec{b_2} \right| &= \sqrt{(1)^2 + (2)^2 + (2)^2} = 3 \\ \vec{b_1} \cdot \vec{b_2} &= \left(3\hat{i} + 2\hat{j} + 6\hat{k} \right) \cdot \left(\hat{i} + 2\hat{j} + 2\hat{k} \right) \\ &= 3 \times 1 + 2 \times 2 + 6 \times 2 \\ &= 3 + 4 + 12 \\ &= 19 \end{aligned}$$

$$\Rightarrow \cos Q = \frac{19}{7 \times 3}$$
$$\Rightarrow Q = \cos^{-1} \left(\frac{19}{21}\right)$$

(ii) The given lines are parallel to the vectors, $\vec{b}_1 = \hat{i} - \hat{j} - 2\hat{k}_{and}$ $\vec{b}_2 = 3\hat{i} - 5\hat{j} - 4\hat{k}_{and}$, respectively.

$$\begin{aligned} \therefore \left| \vec{b}_{1} \right| &= \sqrt{\left(1 \right)^{2} + \left(-1 \right)^{2} + \left(-2 \right)^{2}} = \sqrt{6} \\ \left| \vec{b}_{2} \right| &= \sqrt{\left(3 \right)^{2} + \left(-5 \right)^{2} + \left(-4 \right)^{2}} = \sqrt{50} = 5\sqrt{2} \\ \vec{b}_{1} \cdot \vec{b}_{2} &= \left(\hat{i} - \hat{j} - 2\hat{k} \right) \cdot \left(3\hat{i} - 5\hat{j} - 4\hat{k} \right) \\ &= 1 \cdot 3 - 1\left(-5 \right) - 2\left(-4 \right) \\ &= 3 + 5 + 8 \\ &= 16 \end{aligned}$$

$$\cos Q = \left| \frac{\vec{b}_1 \cdot \vec{b}_2}{\left| \vec{b}_1 \right| \left| \vec{b}_2 \right| \right|}$$

$$\Rightarrow \cos Q = \frac{16}{\sqrt{6} \cdot 5\sqrt{2}} = \frac{16}{\sqrt{2} \cdot \sqrt{3} \cdot 5\sqrt{2}} = \frac{16}{10\sqrt{3}}$$

$$\Rightarrow \cos Q = \frac{8}{5\sqrt{3}}$$

$$\Rightarrow Q = \cos^{-1} \left(\frac{8}{5\sqrt{3}} \right)$$

Question 11:

Find the angle between the following pairs of lines:

(i)
$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$
(ii) $\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$ and $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$
i. Let \vec{b}_1 and \vec{b}_2 be the vectors parallel to the pair of lines,
 $\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$ and $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$, respectively.
 $\therefore \vec{b}_1 = 2\hat{i} + 5\hat{j} - 3\hat{k}$ and $\vec{b}_2 = -\hat{i} + 8\hat{j} + 4\hat{k}$
 $|\vec{b}_1| = \sqrt{(2)^2 + (5)^2 + (-3)^2} = \sqrt{38}$
 $|\vec{b}_2| = \sqrt{(-1)^2 + (8)^2 + (4)^2} = \sqrt{81} = 9$
 $\vec{b}_1 \cdot \vec{b}_2 = (2\hat{i} + 5\hat{j} - 3\hat{k}) \cdot (-\hat{i} + 8\hat{j} + 4\hat{k})$
 $= 2(-1) + 5 \times 8 + (-3) \cdot 4$
 $= -2 + 40 - 12$
 $= 26$

The angle, Q, between the given pair of lines is given by the relation,

$$\cos Q = \left| \frac{\vec{b}_1 \cdot \vec{b}_2}{\left| \vec{b}_1 \right| \left| \vec{b}_2 \right|} \right|$$
$$\Rightarrow \cos Q = \frac{26}{9\sqrt{38}}$$
$$\Rightarrow Q = \cos^{-1} \left(\frac{26}{9\sqrt{38}} \right)$$

(ii) Let \vec{b}_1, \vec{b}_2 be the vectors parallel to the given pair of lines, $\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$ and $\frac{x-5}{4} = \frac{y-5}{1} = \frac{z-3}{8}$, respectively.

$$\vec{b}_{1} = 2\hat{i} + 2\hat{j} + \hat{k}$$

$$\vec{b}_{2} = 4\hat{i} + \hat{j} + 8\hat{k}$$

$$\therefore |\vec{b}_{1}| = \sqrt{(2)^{2} + (2)^{2} + (1)^{2}} = \sqrt{9} = 3$$

$$|\vec{b}_{2}| = \sqrt{4^{2} + 1^{2} + 8^{2}} = \sqrt{81} = 9$$

$$\vec{b}_{1} \cdot \vec{b}_{2} = (2\hat{i} + 2\hat{j} + \hat{k}) \cdot (4\hat{i} + \hat{j} + 8\hat{k})$$

$$= 2 \times 4 + 2 \times 1 + 1 \times 8$$

$$= 8 + 2 + 8$$

$$= 18$$

$$\cos Q = \left| \frac{\vec{b}_1 \cdot \vec{b}_2}{\left| \vec{b}_1 \right| \left| \vec{b}_2 \right|} \right|$$

If Q is the angle between the given pair of lines, then

$$\Rightarrow \cos Q = \frac{18}{3 \times 9} = \frac{2}{3}$$
$$\Rightarrow Q = \cos^{-1}\left(\frac{2}{3}\right)$$

Question 12:

Find the values of p so the line
$$\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$$
 and

The given equations can be written in the standard form as

$$\frac{x-1}{-3} = \frac{y-2}{\frac{2p}{7}} = \frac{z-3}{2} \qquad \text{and} \qquad \frac{x-1}{\frac{-3p}{7}} = \frac{y-5}{1} = \frac{z-6}{-5}$$

The direction ratios of the lines are -3, $\frac{2p}{7}$, 2 and $\frac{-3p}{7}$, 1, -5 respectively.

Two lines with direction ratios, a_1 , b_1 , c_1 and a_2 , b_2 , c_2 , are perpendicular to each other, if $a_1a_2 + b_1 b_2 + c_1c_2 = 0$

$$\therefore (-3) \cdot \left(\frac{-3p}{7}\right) + \left(\frac{2p}{7}\right) \cdot (1) + 2 \cdot (-5) = 0$$
$$\Rightarrow \frac{9p}{7} + \frac{2p}{7} = 10$$
$$\Rightarrow 11p = 70$$
$$\Rightarrow p = \frac{70}{11}$$

Thus, the value of p is $\frac{70}{11}$.

Question 13:

Show that the lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular to each other.

The equations of the given lines are $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$

The direction ratios of the given lines are 7, -5, 1 and 1, 2, 3 respectively.

Two lines with direction ratios, a_1 , b_1 , c_1 and a_2 , b_2 , c_2 , are perpendicular to each other, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$

$$\therefore 7 \times 1 + (-5) \times 2 + 1 \times 3$$

= 7 - 10 + 3

EDUCATION CENTRE Where You Get Complete Knowledge

$$= 0$$

Therefore, the given lines are perpendicular to each other.

Question 14:

Find the shortest distance between the lines

$$\vec{r} = \left(\hat{i} + 2\hat{j} + \hat{k}\right) + \lambda\left(\hat{i} - \hat{j} + \hat{k}\right) \text{and}$$
$$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu\left(2\hat{i} + \hat{j} + 2\hat{k}\right)$$

The equations of the given lines are

$$\vec{r} = \left(\hat{i} + 2\hat{j} + \hat{k}\right) + \lambda\left(\hat{i} - \hat{j} + \hat{k}\right)$$
$$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu\left(2\hat{i} + \hat{j} + 2\hat{k}\right)$$

It is known that the shortest distance between the lines, $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$, is given by,

$$d = \frac{\left| \left(\vec{b}_1 \times \vec{b}_2 \right) \cdot \left(\vec{a}_2 - \vec{a}_2 \right) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \qquad \dots (1)$$

Comparing the given equations, we obtain

$$\vec{a}_{1} = \hat{i} + 2\hat{j} + \hat{k}$$

$$\vec{b}_{1} = \hat{i} - \hat{j} + \hat{k}$$

$$\vec{a}_{2} = 2\hat{i} - \hat{j} - \hat{k}$$

$$\vec{b}_{2} = 2\hat{i} + \hat{j} + 2\hat{k}$$

$$\vec{a}_{2} - \vec{a}_{1} = (2\hat{i} - \hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - 3\hat{j} - 2\hat{k}$$

EDUCATION CENTRE
Where You Get Complete Knowledge

$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix}$$

 $\vec{b}_1 \times \vec{b}_2 = (-2-1)\hat{i} - (2-2)\hat{j} + (1+2)\hat{k} = -3\hat{i} + 3\hat{k}$
 $\Rightarrow |\vec{b}_1 \times \vec{b}_2| = \sqrt{(-3)^2 + (3)^2} = \sqrt{9+9} = \sqrt{18} = 3\sqrt{2}$

Substituting all the values in equation (1), we obtain

$$d = \left| \frac{\left(-3\hat{i} + 3\hat{k}\right) \cdot \left(\hat{i} - 3\hat{j} - 2\hat{k}\right)}{3\sqrt{2}} \right|$$
$$\Rightarrow d = \left| \frac{-3.1 + 3(-2)}{3\sqrt{2}} \right|$$
$$\Rightarrow d = \left| \frac{-9}{3\sqrt{2}} \right|$$
$$\Rightarrow d = \left| \frac{-9}{3\sqrt{2}} \right|$$
$$\Rightarrow d = \frac{3}{\sqrt{2}} = \frac{3 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{3\sqrt{2}}{2}$$

 $3\sqrt{2}$

Therefore, the shortest distance between the two lines is 2 units.

Question 15:

Find the shortest distance between the lines $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

The given lines are $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

It is known that the shortest distance between the two lines, $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} \text{ and } \frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}, \text{ is given by,}$

$$d = \frac{\begin{vmatrix} x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2} - b_{2}c_{1})^{2} + (c_{1}a_{2} - c_{2}a_{1})^{2} + (a_{1}b_{2} - a_{2}b_{1})^{2}}} \qquad \dots (1)$$

Comparing the given equations, we obtain

$$x_{1} = -1, \ y_{1} = -1, \ z_{1} = -1$$

$$a_{1} = 7, \ b_{1} = -6, \ c_{1} = 1$$

$$x_{2} = 3, \ y_{2} = 5, \ z_{2} = 7$$

$$a_{2} = 1, \ b_{2} = -2, \ c_{2} = 1$$
Then,
$$\begin{vmatrix} x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{vmatrix} = \begin{vmatrix} 4 & 6 & 8 \\ 7 & -6 & 1 \\ 1 & -2 & 1 \end{vmatrix}$$

$$= 4(-6+2) - 6(7-1) + 8(-14+6)$$

$$= -16 - 36 - 64$$

$$= -116$$

$$\Rightarrow \sqrt{(b_1c_2 - b_2c_1)^2 + (c_1a_2 - c_2a_1)^2 + (a_1b_2 - a_2b_1)^2} = \sqrt{(-6+2)^2 + (1+7)^2 + (-14+6)^2}$$
$$= \sqrt{16+36+64}$$
$$= \sqrt{116}$$
$$= 2\sqrt{29}$$

Substituting all the values in equation (1), we obtain

$$d = \frac{-116}{2\sqrt{29}} = \frac{-58}{\sqrt{29}} = \frac{-2 \times 29}{\sqrt{29}} = -2\sqrt{29}$$

Since distance is always non-negative, the distance between the given lines is $2\sqrt{29}$ units. Question 16:

Find the shortest distance between the lines whose vector equations are

$$\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - 3\hat{j} + 2\hat{k})$$

and $\vec{r} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \mu(2\hat{i} + 3\hat{j} + \hat{k})$

The given lines are

It is known that the shortest distance between the lines, $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$, is given by,

 $\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(\hat{i} - 3\hat{j} + 2\hat{k})_{\text{and}} \quad \vec{r} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \mu(2\hat{i} + 3\hat{j} + \hat{k})$

$$d = \frac{\left| \left(\vec{b}_1 \times \vec{b}_2 \right) \cdot \left(\vec{a}_2 - \vec{a}_2 \right) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \qquad \dots (1)$$

Comparing the given equations with $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$, we obtain $\vec{a}_1 = \hat{i} + 2\hat{j} + 3\hat{k}$ $\vec{b}_1 = \hat{i} - 3\hat{j} + 2\hat{k}$ $\vec{a}_2 = 4\hat{i} + 5\hat{j} + 6\hat{k}$ $\vec{b}_2 = 2\hat{i} + 3\hat{j} + \hat{k}$ $\vec{a}_2 - \vec{a}_1 = (4\hat{i} + 5\hat{j} + 6\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = 3\hat{i} + 3\hat{j} + 3\hat{k}$ $\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix} = (-3 - 6)\hat{i} - (1 - 4)\hat{j} + (3 + 6)\hat{k} = -9\hat{i} + 3\hat{j} + 9\hat{k}$ $\Rightarrow |\vec{b}_1 \times \vec{b}_2| = \sqrt{(-9)^2 + (3)^2 + (9)^2} = \sqrt{81 + 9 + 81} = \sqrt{171} = 3\sqrt{19}$ $(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1) = (-9\hat{i} + 3\hat{j} + 9\hat{k}) \cdot (3\hat{i} + 3\hat{j} + 3\hat{k})$ $= -9 \times 3 + 3 \times 3 + 9 \times 3$ = 9

Substituting all the values in equation (1), we obtain

$$d = \left|\frac{9}{3\sqrt{19}}\right| = \frac{3}{\sqrt{19}}$$

Therefore, the shortest distance between the two given lines is $\frac{3}{\sqrt{19}}$ units. Question 17:

Find the shortest distance between the lines whose vector equations are

$$\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$$
 and
 $\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$

The given lines are

$$\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k} \Rightarrow \vec{r} = (\hat{i} - 2\hat{j} + 3\hat{k}) + t(-\hat{i} + \hat{j} - 2\hat{k}) \qquad \dots(1)$$

$$\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k} \Rightarrow \vec{r} = (\hat{i} - \hat{j} + \hat{k}) + s(\hat{i} + 2\hat{j} - 2\hat{k}) \qquad \dots (2)$$

It is known that the shortest distance between the lines, $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$, is given by,

$$d = \frac{\left| \left(\vec{b}_1 \times \vec{b}_2 \right) \cdot \left(\vec{a}_2 - \vec{a}_2 \right) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \qquad \dots (3)$$

For the given equations,

$$\vec{a}_{1} = \hat{i} - 2\hat{j} + 3\hat{k}$$

$$\vec{b}_{1} = -\hat{i} + \hat{j} - 2\hat{k}$$

$$\vec{a}_{2} = \hat{i} - \hat{j} - \hat{k}$$

$$\vec{b}_{2} = \hat{i} + 2\hat{j} - 2\hat{k}$$

$$\vec{a}_{2} - \vec{a}_{1} = (\hat{i} - \hat{j} - \hat{k}) - (\hat{i} - 2\hat{j} + 3\hat{k}) = \hat{j} - 4\hat{k}$$

$$\vec{b}_{1} \times \vec{b}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} = (-2 + 4)\hat{i} - (2 + 2)\hat{j} + (-2 - 1)\hat{k} = 2\hat{i} - 4\hat{j} - 3\hat{k}$$

$$\Rightarrow \left| \vec{b}_{1} \times \vec{b}_{2} \right| = \sqrt{(2)^{2} + (-4)^{2} + (-3)^{2}} = \sqrt{4 + 16 + 9} = \sqrt{29}$$

Substituting all the values in equation (3), we obtain

$$d = \left| \frac{8}{\sqrt{29}} \right| = \frac{8}{\sqrt{29}}$$

Therefore, the shortest distance between the lines is $\sqrt{29}$ units.

Exercise-11.3

Question 1:

In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

(a)
$$z = 2$$
 (b) $x + y + z = 1$

(c)
$$2x+3y-z=5$$
 (d) $5y+8=0$

(a) The equation of the plane is z = 2 or 0x + 0y + z = 2 ... (1)

The direction ratios of normal are 0, 0, and 1.

$$\therefore \sqrt{0^2 + 0^2 + 1^2} = 1$$

Dividing both sides of equation (1) by 1, we obtain

0.x + 0.y + 1.z = 2

This is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

Therefore, the direction cosines are 0, 0, and 1 and the distance of the plane from the origin is 2 units.

(b) $x + y + z = 1 \dots (1)$

The direction ratios of normal are 1, 1, and 1.

Dividing both sides of equation (1) by $\sqrt{3}$, we obtain

 $\frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y + \frac{1}{\sqrt{3}}z = \frac{1}{\sqrt{3}} \qquad \dots (2)$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$, and $\frac{1}{\sqrt{3}}$ and the distance of normal from the origin is $\frac{1}{\sqrt{3}}$ units.

(c)
$$2x + 3y - z = 5 \dots (1)$$

The direction ratios of normal are 2, 3, and -1.

$$\therefore \sqrt{(2)^{2} + (3)^{2} + (-1)^{2}} = \sqrt{14}$$

Dividing both sides of equation (1) by $\sqrt{14}$, we obtain

$$\frac{2}{\sqrt{14}}x + \frac{3}{\sqrt{14}}y - \frac{1}{\sqrt{14}}z = \frac{5}{\sqrt{14}}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal to the plane are $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$, and $\frac{-1}{\sqrt{14}}$ and the distance of normal from the origin is $\frac{5}{\sqrt{14}}$ units.

(d) 5y + 8 = 0

$$\Rightarrow 0x - 5y + 0z = 8 \dots (1)$$

The direction ratios of normal are 0, -5, and 0.

$$\therefore \sqrt{0 + \left(-5\right)^2 + 0} = 5$$

Dividing both sides of equation (1) by 5, we obtain

$$-y = \frac{8}{5}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal to the plane are 0, -1, and 0 and the distance of normal from the origin is $\frac{8}{5}$ units.

Question 2:

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3\hat{i} + 5\hat{j} - 6\hat{k}$.

The normal vector is, $\vec{n} = 3\hat{i} + 5\hat{j} - 6\hat{k}$

$$\therefore \hat{n} = \frac{\vec{n}}{\left|\vec{n}\right|} = \frac{3\hat{i} + 5\hat{j} - 6\hat{k}}{\sqrt{(3)^2 + (5)^2 + (6)^2}} = \frac{3\hat{i} + 5\hat{j} - 6\hat{k}}{\sqrt{70}}$$

It is known that the equation of the plane with position vector \vec{r} is given by, $\vec{r} \cdot \hat{n} = d$

$$\Rightarrow \hat{r} \cdot \left(\frac{3\hat{i} + 5\hat{j} - 6\hat{k}}{\sqrt{70}}\right) = 7$$

This is the vector equation of the required plane.

Question 3:

Find the Cartesian equation of the following planes:

(a)
$$\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 2$$
 (b) $\vec{r} \cdot (2\hat{i} + 3\hat{j} - 4\hat{k}) = 1$

(c)
$$r \cdot \lfloor (s-2t)t + (s-t)j + (2s+t)k \rfloor = 1$$

(a) It is given that equation of the plane is

$$\vec{r} \cdot \left(\hat{i} + \hat{j} - \hat{k}\right) = 2 \qquad \dots (1)$$

For any arbitrary point P (x, y, z) on the plane, position vector \vec{r} is given by, $\vec{r} = x\hat{i} + y\hat{j} - z\hat{k}$

Substituting the value of \vec{r} in equation (1), we obtain

$$(x\hat{i} + y\hat{j} - z\hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k}) = 2 \Rightarrow x + y - z = 2$$

This is the Cartesian equation of the plane.

(b)
$$\vec{r} \cdot (2\hat{i} + 3\hat{j} - 4\hat{k}) = 1$$
 ...(1)

For any arbitrary point P (x, y, z) on the plane, position vector \vec{r} is given by, $\vec{r} = x\hat{i} + y\hat{j} - z\hat{k}$

Substituting the value of \vec{r} in equation (1), we obtain

$$\left(x\hat{i} + y\hat{j} + z\hat{k}\right) \cdot \left(2\hat{i} + 3\hat{j} - 4\hat{k}\right) = 1$$
$$\Rightarrow 2x + 3y - 4z = 1$$

This is the Cartesian equation of the plane.

(c)
$$\vec{r} \cdot \left[(s-2t)\hat{i} + (3-t)\hat{j} + (2s+t)\hat{k} \right] = 15$$
 ...(1)

For any arbitrary point P (x, y, z) on the plane, position vector \vec{r} is given by, $\vec{r} = x\hat{i} + y\hat{j} - z\hat{k}$

Substituting the value of \vec{r} in equation (1), we obtain

This is the Cartesian equation of the given plane.

Question 4:

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

(a)
$$2x+3y+4z-12=0$$
 (b) $3y+4z-6=0$

(c)
$$x+y+z=1$$
 (d) $5y+8=0$

(a) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_1, y_1, z_1) .

$$2x + 3y + 4z - 12 = 0$$

$$\Rightarrow 2x + 3y + 4z = 12 \dots (1)$$

The direction ratios of normal are 2, 3, and 4.

$$\therefore \sqrt{(2)^{2} + (3)^{2} + (4)^{2}} = \sqrt{29}$$

Dividing both sides of equation (1) by $\sqrt{29}$, we obtain

$$\frac{2}{\sqrt{29}}x + \frac{3}{\sqrt{29}}y + \frac{4}{\sqrt{29}}z = \frac{12}{\sqrt{29}}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

(*ld*, *md*, *nd*).

Therefore, the coordinates of the foot of the perpendicular are

$$\left(\frac{2}{\sqrt{29}},\frac{12}{\sqrt{29}},\frac{3}{\sqrt{29}},\frac{12}{\sqrt{29}},\frac{4}{\sqrt{29}},\frac{12}{\sqrt{29}}\right)$$
 i.e., $\left(\frac{24}{29},\frac{36}{49},\frac{48}{29}\right)$.

(b) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_1, y_1, z_1) .

3y + 4z - 6 = 0

 $\Rightarrow 0x+3y+4z=6 \dots (1)$

The direction ratios of the normal are 0, 3, and 4.

$$\therefore \sqrt{0+3^2+4^2}=5$$

Dividing both sides of equation (1) by 5, we obtain

$$0x + \frac{3}{5}y + \frac{4}{5}z = \frac{6}{5}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

(ld, md, nd).

Therefore, the coordinates of the foot of the perpendicular are

$$\left(0, \frac{3}{5}, \frac{6}{5}, \frac{4}{5}, \frac{6}{5}\right)$$
 i.e., $\left(0, \frac{18}{25}, \frac{24}{25}\right)$.

(c) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_1, y_1, z_1) .

$$x + y + z = 1 \dots (1)$$

The direction ratios of the normal are 1, 1, and 1.

 $\therefore \sqrt{l^2+l^2+l^2}=\sqrt{3}$

Dividing both sides of equation (1) by $\sqrt{3}$, we obtain

$$\frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y + \frac{1}{\sqrt{3}}z = \frac{1}{\sqrt{3}}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

(ld, md, nd).

Therefore, the coordinates of the foot of the perpendicular are

$$\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$$
 i.e., $\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$

(d) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_1, y_1, z_1) .

$$5y + 8 = 0$$

$$\Rightarrow 0x - 5y + 0z = 8 \dots (1)$$

The direction ratios of the normal are 0, -5, and 0.

$$\therefore \sqrt{0 + \left(-5\right)^2 + 0} = 5$$

Dividing both sides of equation (1) by 5, we obtain

$$-y = \frac{8}{5}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

(ld, md, nd).

Therefore, the coordinates of the foot of the perpendicular are

$$\left(0, -1\left(\frac{8}{5}\right), 0\right)$$
 i.e., $\left(0, -\frac{8}{5}, 0\right)$.

Question 5:

Find the vector and Cartesian equation of the planes

- (a) that passes through the point (1, 0, -2) and the normal to the plane is $\hat{i} + \hat{j} \hat{k}$.
- (b) that passes through the point (1, 4, 6) and the normal vector to the plane is $\hat{i} 2\hat{j} + \hat{k}$.
- (a) The position vector of point (1, 0, -2) is $\vec{a} = \hat{i} 2\hat{k}$

The normal vector \vec{N} perpendicular to the plane is $\vec{N} = \hat{i} + \hat{j} - \hat{k}$

The vector equation of the plane is given by, $(\vec{r} - \vec{a}) \cdot \vec{N} = 0$

$$\Rightarrow \left[\vec{r} - (\hat{i} - 2\hat{k})\right] \cdot (\hat{i} + \hat{j} - \hat{k}) = 0 \qquad \dots (1)$$

 \vec{r} is the position vector of any point P (x, y, z) in the plane.

$$\therefore \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Therefore, equation (1) becomes

$$\begin{bmatrix} \left(x\hat{i}+y\hat{j}+z\hat{k}\right)-\left(\hat{i}-2\hat{k}\right)\end{bmatrix} \cdot \left(\hat{i}+\hat{j}-\hat{k}\right) = 0$$

$$\Rightarrow \begin{bmatrix} (x-1)\hat{i}+y\hat{j}+(z+2)\hat{k}\end{bmatrix} \cdot \left(\hat{i}+\hat{j}-\hat{k}\right) = 0$$

$$\Rightarrow (x-1)+y-(z+2) = 0$$

$$\Rightarrow x+y-z-3 = 0$$

$$\Rightarrow x+y-z = 3$$

This is the Cartesian equation of the required plane.

(b) The position vector of the point (1, 4, 6) is $\vec{a} = \hat{i} + 4\hat{j} + 6\hat{k}$

The normal vector \vec{N} perpendicular to the plane is $\vec{N} = \hat{i} - 2\hat{j} + \hat{k}$

The vector equation of the plane is given by, $(\vec{r} - \vec{a}) \cdot \vec{N} = 0$

$$\Rightarrow \left[\vec{r} - \left(\hat{i} + 4\hat{j} + 6\hat{k}\right)\right] \cdot \left(\hat{i} - 2\hat{j} + \hat{k}\right) = 0 \qquad \dots(1)$$

 \vec{r} is the position vector of any point P (x, y, z) in the plane.

$$\therefore \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Therefore, equation (1) becomes

$$\begin{bmatrix} \left(x\hat{i} + y\hat{j} + z\hat{k}\right) - \left(\hat{i} + 4\hat{j} + 6\hat{k}\right) \end{bmatrix} \cdot \left(\hat{i} - 2\hat{j} + \hat{k}\right) = 0$$

$$\Rightarrow \begin{bmatrix} (x-1)\hat{i} + (y-4)\hat{j} + (z-6)\hat{k} \end{bmatrix} \cdot \left(\hat{i} - 2\hat{j} + \hat{k}\right) = 0$$

$$\Rightarrow (x-1) - 2(y-4) + (z-6) = 0$$

$$\Rightarrow x - 2y + z + 1 = 0$$

This is the Cartesian equation of the required plane.

Question 6:

Find the equations of the planes that passes through three points.

(b) (1, 1, 0), (1, 2, 1), (-2, 2, -1)

(a) The given points are A (1, 1, -1), B (6, 4, -5), and C (-4, -2, 3).

$$\begin{vmatrix} 1 & 1 & -1 \\ 6 & 4 & -5 \\ -4 & -2 & 3 \end{vmatrix} = (12 - 10) - (18 - 20) - (-12 + 16)$$
$$= 2 + 2 - 4$$
$$= 0$$

Since A, B, C are collinear points, there will be infinite number of planes passing through the given points.

(b) The given points are A (1, 1, 0), B (1, 2, 1), and C (-2, 2, -1).

$$\begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -2 & 2 & -1 \end{vmatrix} = (-2-2) - (2+2) = -8 \neq 0$$

Therefore, a plane will pass through the points A, B, and C.

It is known that the equation of the plane through the points, (x_1, y_1, z_1) , (x_2, y_2, z_2) , and (x_3, y_3, z_3) , is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} x - 1 & y - 1 & z \\ 0 & 1 & 1 \\ -3 & 1 & -1 \end{vmatrix} = 0$$

$$\Rightarrow (-2)(x - 1) - 3(y - 1) + 3z = 0$$

$$\Rightarrow -2x - 3y + 3z + 2 + 3 = 0$$

$$\Rightarrow -2x - 3y + 3z = -5$$

$$\Rightarrow 2x + 3y - 3z = 5$$

This is the Cartesian equation of the required plane.

Question 7:

Find the intercepts cut off by the plane 2x + y - z = 5

2x + y - z = 5 ...(1)

Dividing both sides of equation (1) by 5, we obtain

$$\frac{2}{5}x + \frac{y}{5} - \frac{z}{5} = 1$$

$$\Rightarrow \frac{x}{\frac{5}{2}} + \frac{y}{5} + \frac{z}{-5} = 1 \qquad \dots (2)$$

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

It is known that the equation of a plane in intercept form is $a \ b \ c$, where a, b, c are the intercepts cut off by the plane at x, y, and z axes respectively.

Therefore, for the given equation,

$$a = \frac{5}{2}, b = 5$$
, and $c = -5$

Thus, the intercepts cut off by the plane are $\frac{5}{2}$, 5, and -5.

Question 8:

Find the equation of the plane with intercept 3 on the *y*-axis and parallel to ZOX plane.

The equation of the plane ZOX is

y = 0

Any plane parallel to it is of the form, y = a

Since the *y*-intercept of the plane is 3,

$$\therefore a = 3$$

Thus, the equation of the required plane is y = 3

Question 9:

Find the equation of the plane through the intersection of the planes 3x-y+2z-4=0and x+y+z-2=0 and the point (2, 2, 1)

The equation of any plane through the intersection of the planes,

3x - y + 2z - 4 = 0 and x + y + z - 2 = 0, is

 $(3x - y + 2z - 4) + \alpha (x + y + z - 2) = 0$, where $\alpha \in \mathbb{R}$...(1)

The plane passes through the point (2, 2, 1). Therefore, this point will satisfy equation (1).

EDUCATION CENTRE

Where You Get Complete Knowledge

$$\therefore (3 \times 2 - 2 + 2 \times 1 - 4) + \alpha (2 + 2 + 1 - 2) = 0$$

$$\Rightarrow 2 + 3\alpha = 0$$

$$\Rightarrow \alpha = -\frac{2}{3}$$

Substituting $\alpha = -\frac{2}{3}$ in equation (1), we obtain

$$(3x - y + 2z - 4) - \frac{2}{3}(x + y + z - 2) = 0$$

$$\Rightarrow 3(3x - y + 2z - 4) - 2(x + y + z - 2) = 0$$

$$\Rightarrow (9x - 3y + 6z - 12) - 2(x + y + z - 2) = 0$$

$$\Rightarrow 7x - 5y + 4z - 8 = 0$$

This is the required equation of the plane.

Question 10:

Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 7$, $\vec{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) = 9$ and through the point (2, 1, 3)

The equations of the planes are $\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 7$ and $\vec{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) = 9$

$$\Rightarrow \vec{r} \cdot \left(2\hat{i} + 2\hat{j} - 3\hat{k}\right) - 7 = 0 \qquad \dots(1)$$

$$\vec{r} \cdot \left(2\hat{i} + 5\hat{j} + 3\hat{k}\right) - 9 = 0 \qquad \dots(2)$$

The equation of any plane through the intersection of the planes given in equations (1) and (2) is given by,

$$\begin{bmatrix} \vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) - 7 \end{bmatrix} + \lambda \begin{bmatrix} \vec{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) - 9 \end{bmatrix} = 0, \text{ where } \lambda \in R$$

$$\vec{r} \cdot \begin{bmatrix} (2\hat{i} + 2\hat{j} - 3\hat{k}) + \lambda (2\hat{i} + 5\hat{j} + 3\hat{k}) \end{bmatrix} = 9\lambda + 7$$

$$\vec{r} \cdot \begin{bmatrix} (2 + 2\lambda)\hat{i} + (2 + 5\lambda)\hat{j} + (3\lambda - 3)\hat{k} \end{bmatrix} = 9\lambda + 7 \qquad \dots (3)$$

The plane passes through the point (2, 1, 3). Therefore, its position vector is given by,

 $\vec{r}=2\hat{i}+2\hat{j}+3\hat{k}$

Substituting in equation (3), we obtain

$$(2\hat{i} + \hat{j} - 3\hat{k}) \cdot [(2 + 2\lambda)\hat{i} + (2 + 5\lambda)\hat{j} + (3\lambda - 3)\hat{k}] = 9\lambda + 7 \Rightarrow (2 + 2\lambda) + (2 + 5\lambda) + (3\lambda - 3) = 9\lambda + 7 \Rightarrow 18\lambda - 3 = 9\lambda + 7 \Rightarrow 9\lambda = 10 \Rightarrow \lambda = \frac{10}{9}$$

Substituting $\lambda = \frac{10}{9}$ in equation (3), we obtain

$$\vec{r} \cdot \left(\frac{38}{9}\hat{i} + \frac{68}{9}\hat{j} + \frac{3}{9}\hat{k}\right) = 17$$
$$\Rightarrow \vec{r} \cdot \left(38\hat{i} + 68\hat{j} + 3\hat{k}\right) = 153$$

This is the vector equation of the required plane.

Question 11:

Find the equation of the plane through the line of intersection of the planes x+y+z=1and 2x+3y+4z=5 which is perpendicular to the plane x-y+z=0

The equation of the plane through the intersection of the planes, x+y+z=1and 2x+3y+4z=5, is

$$(x + y + z - 1) + \lambda (2x + 3y + 4z - 5) = 0$$

$$\Rightarrow (2\lambda + 1)x + (3\lambda + 1)y + (4\lambda + 1)z - (5\lambda + 1) = 0 \qquad \dots (1)$$

The direction ratios, a_1 , b_1 , c_1 , of this plane are $(2\lambda + 1)$, $(3\lambda + 1)$, and $(4\lambda + 1)$.

The plane in equation (1) is perpendicular to x - y + z = 0

Its direction ratios, a_2 , b_2 , c_2 , are 1, -1, and 1.

Since the planes are perpendicular,

EDUCATION CENTRE

Where You Get Complete Knowledge

$$a_1a_2 + b_1b_2 + c_1c_2 = 0$$

$$\Rightarrow (2\lambda + 1) - (3\lambda + 1) + (4\lambda + 1) = 0$$

$$\Rightarrow 3\lambda + 1 = 0$$

$$\Rightarrow \lambda = -\frac{1}{3}$$

Substituting $\lambda = -\frac{1}{3}$ in equation (1), we obtain

$$\frac{1}{3}x - \frac{1}{3}z + \frac{2}{3} = 0$$
$$\Rightarrow x - z + 2 = 0$$

This is the required equation of the plane.

Question 12:

Find the angle between the planes whose vector equations are

$$\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 5$$
 and $\vec{r} \cdot (3\hat{i} - 3\hat{j} + 5\hat{k}) = 3$

The equations of the given planes are $\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 5$ and $\vec{r} \cdot (3\hat{i} - 3\hat{j} + 5\hat{k}) = 3$

It is known that if \vec{n}_1 and \vec{n}_2 are normal to the planes, $\vec{r} \cdot \vec{n}_1 = d_1$ and $\vec{r} \cdot \vec{n}_2 = d_2$, then the angle between them, Q, is given by,

$$\cos Q = \left| \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1| |\vec{n}_2|} \right| \qquad \dots (1)$$

Here, $\vec{n}_1 = 2\hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{n}_2 = 3\hat{i} - 3\hat{j} + 5\hat{k}$

$$\therefore \vec{n}_1 \cdot \vec{n}_2 = (2\hat{i} + 2\hat{j} - 3\hat{k})(3\hat{i} - 3\hat{j} + 5\hat{k}) = 2.3 + 2.(-3) + (-3).5 = -15$$
$$|\vec{n}_1| = \sqrt{(2)^2 + (2)^2 + (-3)^2} = \sqrt{17}$$
$$|\vec{n}_2| = \sqrt{(3)^2 + (-3)^2 + (5)^2} = \sqrt{43}$$

Substituting the value of $\vec{n} \cdot \vec{n}_2$, $|\vec{n}_1|$ and $|\vec{n}_2|$ in equation (1), we obtain

$$\cos Q = \left| \frac{-15}{\sqrt{17} \cdot \sqrt{43}} \right|$$
$$\Rightarrow \cos Q = \frac{15}{\sqrt{731}}$$
$$\Rightarrow \cos Q^{-1} = \left(\frac{15}{\sqrt{731}} \right)$$

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

(a)
$$7x + 5y + 6z + 30 = 0$$
 and $3x - y - 10z + 4 = 0$

(b)
$$2x + y + 3z - 2 = 0$$
 and $x - 2y + 5 = 0$

- (c) 2x-2y+4z+5=0 and 3x-3y+6z-1=0
- (d) 2x y + 3z 1 = 0 and 2x y + 3z + 3 = 0

(e)
$$4x + 8y + z - 8 = 0$$
 and $y + z - 4 = 0$

The direction ratios of normal to the plane, $L_1: a_1x + b_1y + c_1z = 0$, are a_1, b_1, c_1 and $L_2: a_1x + b_2y + c_2z = 0$ are a_2, b_2, c_2 .

$$L_1 \parallel L_2, \text{ if } \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
$$L_1 \perp L_2, \text{ if } a_1a_2 + b_1b_2 + c_1c_2 = 0$$

The angle between L_1 and L_2 is given by,

$$Q = \cos^{-1} \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

(a) The equations of the planes are 7x + 5y + 6z + 30 = 0 and

$$3x - y - 10z + 4 = 0$$

Here, $a_1 = 7$, $b_1 = 5$, $c_1 = 6$

$$a_2 = 3, b_2 = -1, c_2 = -10$$

 $a_1a_2 + b_1b_2 + c_1c_2 = 7 \times 3 + 5 \times (-1) + 6 \times (-10) = -44 \neq 0$

Therefore, the given planes are not perpendicular.

$$\frac{a_1}{a_2} = \frac{7}{3}, \frac{b_1}{b_2} = \frac{5}{-1} = -5, \frac{c_1}{c_2} = \frac{6}{-10} = \frac{-3}{5}$$

It can be seen that, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

Therefore, the given planes are not parallel.

The angle between them is given by,

$$Q = \cos^{-1} \left| \frac{7 \times 3 + 5 \times (-1) + 6 \times (-10)}{\sqrt{(7)^2 + (5)^2 + (6)^2} \times \sqrt{(3)^2 + (-1)^2 + (-10)^2}} \right|$$
$$= \cos^{-1} \left| \frac{21 - 5 - 60}{\sqrt{110} \times \sqrt{110}} \right|$$
$$= \cos^{-1} \frac{44}{110}$$
$$= \cos^{-1} \frac{2}{5}$$

(b) The equations of the planes are 2x + y + 3z - 2 = 0 and x - 2y + 5 = 0

Here, $a_1 = 2$, $b_1 = 1$, $c_1 = 3$ and $a_2 = 1$, $b_2 = -2$, $c_2 = 0$

$$\therefore a_1 a_2 + b_1 b_2 + c_1 c_2 = 2 \times 1 + 1 \times (-2) + 3 \times 0 = 0$$

Thus, the given planes are perpendicular to each other.

(c) The equations of the given planes are 2x-2y+4z+5=0 and 3x-3y+6z-1=0

Thus, the given planes are not perpendicular to each other.

$$\frac{a_1}{a_2} = \frac{2}{3}, \frac{b_1}{b_2} = \frac{-2}{-3} = \frac{2}{3} \text{ and } \frac{c_1}{c_2} = \frac{4}{6} = \frac{2}{3}$$
$$\frac{a_1}{c_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Thus, the given planes are parallel to each other.

(d) The equations of the planes are 2x - y + 3z - 1 = 0 and 2x - y + 3z + 3 = 0Here, $a_1 = 2$, $b_1 = -1$, $c_1 = 3$ and $a_2 = 2$, $b_2 = -1$, $c_2 = 3$ $\frac{a_1}{a_2} = \frac{2}{2} = 1$, $\frac{b_1}{b_2} = \frac{-1}{-1} = 1$ and $\frac{c_1}{c_2} = \frac{3}{3} = 1$ $\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Thus, the given lines are parallel to each other.

(e) The equations of the given planes are 4x+8y+z-8=0 and y+z-4=0

Here,
$$a_1 = 4$$
, $b_1 = 8$, $c_1 = 1$ and $a_2 = 0$, $b_2 = 1$, $c_2 = 1$

$$a_1a_2 + b_1b_2 + c_1c_2 = 4 \times 0 + 8 \times 1 + 1 = 9 \neq 0$$

Therefore, the given lines are not perpendicular to each other.

$$\frac{a_1}{a_2} = \frac{4}{0}, \ \frac{b_1}{b_2} = \frac{8}{1} = 8, \ \frac{c_1}{c_2} = \frac{1}{1} = 1$$
$$\therefore \ \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

Therefore, the given lines are not parallel to each other.

The angle between the planes is given by,

$$Q = \cos^{-1} \left| \frac{4 \times 0 + 8 \times 1 + 1 \times 1}{\sqrt{4^2 + 8^2 + 1^2} \times \sqrt{0^2 + 1^2 + 1^2}} \right| = \cos^{-1} \left| \frac{9}{9 \times \sqrt{2}} \right| = \cos^{-1} \left(\frac{1}{\sqrt{2}} \right) = 45^{\circ}$$

Question 14:

In the following cases, find the distance of each of the given points from the corresponding given plane.

Point Plane

- (a) (0, 0, 0) 3x 4y + 12z = 3
- (b) (3, -2, 1) 2x y + 2z + 3 = 0
- (c) (2, 3, -5) x+2y-2z=9

(d)
$$(-6, 0, 0)$$
 $2x - 3y + 6z - 2 = 0$

It is known that the distance between a point, $p(x_1, y_1, z_1)$, and a plane, Ax + By + Cz = D, is given by,

$$d = \left| \frac{Ax_1 + By_1 + Cz_1 - D}{\sqrt{A^2 + B^2 + C^2}} \right| \qquad \dots (1)$$

(a) The given point is (0, 0, 0) and the plane is 3x - 4y + 12z = 3

$$\therefore d = \left| \frac{3 \times 0 - 4 \times 0 + 12 \times 0 - 3}{\sqrt{(3)^2 + (-4)^2 + (12)^2}} \right| = \frac{3}{\sqrt{169}} = \frac{3}{13}$$

(b) The given point is (3, -2, 1) and the plane is 2x - y + 2z + 3 = 0

$$d = \left| \frac{2 \times 3 - (-2) + 2 \times 1 + 3}{\sqrt{(2)^2 + (-1)^2 + (2)^2}} \right| = \left| \frac{13}{3} \right| = \frac{13}{3}$$

(c) The given point is (2, 3, -5) and the plane is x+2y-2z=9

$$\therefore d = \left| \frac{2 + 2 \times 3 - 2(-5) - 9}{\sqrt{(1)^2 + (2)^2 + (-2)^2}} \right| = \frac{9}{3} = 3$$

(d) The given point is (-6, 0, 0) and the plane is 2x-3y+6z-2=0

$$d = \left| \frac{2(-6) - 3 \times 0 + 6 \times 0 - 2}{\sqrt{(2)^2 + (-3)^2 + (6)^2}} \right| = \left| \frac{-14}{\sqrt{49}} \right| = \frac{14}{7} = 2$$