

Question 1:

Let $f: \mathbf{R} \to \mathbf{R}$ be defined as f(x) = 10x + 7. Find the function $g: \mathbf{R} \to \mathbf{R}$ such that $g \circ f = f \circ g = 1_{\mathbf{R}}$.

Answer :

It is given that $f: \mathbf{R} \to \mathbf{R}$ is defined as f(x) = 10x + 7.

One-one:

Let f(x) = f(y), where $x, y \in \mathbf{R}$.

$$\Rightarrow 10x + 7 = 10y + 7$$

 $\Rightarrow x = y$

 $\therefore f$ is a one-one function.

Onto:

For $y \in \mathbf{R}$, let y = 10x + 7.

$$\Rightarrow x = \frac{y-7}{10} \in \mathbf{R}$$

Therefore, for any $y \in \mathbf{R}$, there exists $x = \frac{y-7}{10} \in \mathbf{R}$ such that $f(x) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y - 7 + 7 = y.$

 $\therefore f$ is onto.

Therefore, f is one-one and onto.

Thus, f is an invertible function.

Let us define g: $\mathbf{R} \to \mathbf{R}$ as $g(y) = \frac{y-7}{10}$.

Now, we have:

$$gof(x) = g(f(x)) = g(10x+7) = \frac{(10x+7)-7}{10} = \frac{10x}{10} = 10$$

And,

$$fog(y) = f(g(y)) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y-7 + 7 = y$$

$$\therefore gof = I_{\mathbf{R}} \text{ and } fog = I_{\mathbf{R}}$$

Hence, the required function g: $\mathbf{R} \to \mathbf{R}$ is defined as $g(y) = \frac{y-7}{10}$.

Question 2:

Let $f: W \to W$ be defined as f(n) = n - 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Answer :

It is given that:

$$f: W \to W$$
 is defined as $f(n) = \begin{cases} n-1, & \text{if } n \text{ is odd} \\ n+1, & \text{if } n \text{ is even} \end{cases}$

One-one:

Let f(n) = f(m).

It can be observed that if *n* is odd and *m* is even, then we will have n - 1 = m + 1.

$$\Rightarrow n - m = 2$$

However, this is impossible.

Similarly, the possibility of n being even and m being odd can also be ignored under a similar argument.

 $[\]therefore$ Both *n* and *m* must be either odd or even.

Now, if both *n* and *m* are odd, then we have:

 $f(n) = f(m) \Rightarrow n - 1 = m - 1 \Rightarrow n = m$

Again, if both *n* and *m* are even, then we have:

$$f(n) = f(m) \Rightarrow n+1 = m+1 \Rightarrow n = m$$

 $\therefore f$ is one-one.

It is clear that any odd number 2r + 1 in co-domain N is the image of 2r in domain N and any even number 2r in co-domain N is the image of 2r + 1 in domain N.

 $\therefore f$ is onto.

Hence, f is an invertible function.

Let us define $g: W \rightarrow W$ as:

 $g(m) = \begin{cases} m+1, \text{ if } m \text{ is even} \\ m-1, \text{ if } m \text{ is odd} \end{cases}$

Now, when *n* is odd:

$$gof(n) = g(f(n)) = g(n-1) = n-1+1 = n$$

And, when *n* is even:

$$gof(n) = g(f(n)) = g(n+1) = n+1-1 = n$$

Similarly, when *m* is odd:

$$fog(m) = f(g(m)) = f(m-1) = m-1+1 = m$$

When *m* is even:

$$fog(m) = f(g(m)) = f(m+1) = m+1-1 = m$$

 \therefore gof = I_w and fog = I_w

Thus, f is invertible and the inverse of f is given by $f^{-1} = g$, which is the same as f.

Hence, the inverse of f is f itself.

Question 3:

If $f: \mathbf{R} \to \mathbf{R}$ is defined by $f(x) = x^2 - 3x + 2$, find f(f(x)).

Answer :

It is given that f: $\mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x) = x^2 - 3x + 2$.

$$f(f(x)) = f(x^{2} - 3x + 2)$$

= $(x^{2} - 3x + 2)^{2} - 3(x^{2} - 3x + 2) + 2$
= $x^{4} + 9x^{2} + 4 - 6x^{3} - 12x + 4x^{2} - 3x^{2} + 9x - 6 + 2$
= $x^{4} - 6x^{3} + 10x^{2} - 3x$

Question 4:

Show that function $f: \mathbf{R} \to \{x \in \mathbf{R}: -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}$, $x \in \mathbf{R}$ is one-one and onto function.

Answer :

It is given that $f: \mathbf{R} \to \{x \in \mathbf{R}: -1 < x < 1\}$ is defined as $f(x) = \frac{x}{1+|x|}, x \in \mathbf{R}$.

Suppose f(x) = f(y), where $x, y \in \mathbf{R}$.

$$\Rightarrow \frac{x}{1+|x|} = \frac{y}{1+|y|}$$

It can be observed that if *x* is positive and *y* is negative, then we have:

$$\frac{x}{1+x} = \frac{y}{1-y} \Longrightarrow 2xy = x-y$$

Since *x* is positive and *y* is negative:

 $x > y \Rightarrow x - y > 0$

But, 2xy is negative.

Then, $2xy \neq x - y$.

Thus, the case of x being positive and y being negative can be ruled out.

Under a similar argument, x being negative and y being positive can also be ruled out

 \therefore x and y have to be either positive or negative.

When *x* and *y* are both positive, we have:

$$f(x) = f(y) \Longrightarrow \frac{x}{1+x} = \frac{y}{1+y} \Longrightarrow x + xy = y + xy \Longrightarrow x = y$$

When *x* and *y* are both negative, we have:

$$f(x) = f(y) \Rightarrow \frac{x}{1-x} = \frac{y}{1-y} \Rightarrow x - xy = y - yx \Rightarrow x = y$$

 $\therefore f$ is one-one.

Now, let $y \in \mathbf{R}$ such that -1 < y < 1.

If x is negative, then there exists $x = \frac{y}{1+y} \in \mathbf{R}$ such that

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|} = \frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)} = \frac{y}{1+y-y} = y.$$

If x is positive, then there exists $x = \frac{y}{1-y} \in \mathbf{R}$ such that

$$f(x) = f\left(\frac{y}{1-y}\right) = \frac{\left(\frac{y}{1-y}\right)}{1+\left|\left(\frac{y}{1-y}\right)\right|} = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = \frac{y}{1-y+y} = y.$$

 $\therefore f$ is onto.

Hence, f is one-one and onto.

Question 5:

Show that the function $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^3$ is injective.

Answer :

 $f: \mathbf{R} \to \mathbf{R}$ is given as $f(x) = x^3$.

Suppose f(x) = f(y), where $x, y \in \mathbf{R}$.

$$\Rightarrow x^3 = y^3 \dots (1)$$

Now, we need to show that x = y.

Suppose $x \neq y$, their cubes will also not be equal.

$$\Rightarrow x^3 \neq y^3$$

However, this will be a contradiction to (1).

 $\therefore x = y$

Hence, f is injective.

Question 6:

Give examples of two functions $f: \mathbb{N} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ such that $g \circ f$ is injective but g is not injective.

(Hint: Consider f(x) = x and g(x) = |x|)

Answer :

Define
$$f: \mathbf{N} \to \mathbf{Z}$$
 as $f(x) = x$ and $g: \mathbf{Z} \to \mathbf{Z}$ as $g(x) = |x|$.

We first show that *g* is not injective.

It can be observed that:

$$g(-1) = |-1| = 1$$
$$g(1) = |1| = 1$$
$$\therefore g(-1) = g(1), \text{ but } -1 \neq 1.$$
$$\therefore g \text{ is not injective.}$$

Now, gof: $\mathbf{N} \to \mathbf{Z}$ is defined as gof(x) = g(f(x)) = g(x) = |x|.

Let $x, y \in \mathbf{N}$ such that gof(x) = gof(y).

$$\Rightarrow |x| = |y|$$

Since *x* and $y \in \mathbf{N}$, both are positive.

$$\therefore |x| = |y| \Longrightarrow x = y$$

Hence, gof is injective

Question 7:

Given examples of two functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ such that gof is onto but f is not onto.

(Hint: Consider
$$f(x) = x + 1$$
 and $g(x) = \begin{cases} x - 1 & \text{if } x > 1 \\ 1 & \text{if } x = 1 \end{cases}$

Answer :

Define $f: \mathbf{N} \to \mathbf{N}$ by,

$$f(x) = x + 1$$

And, $g: \mathbb{N} \to \mathbb{N}$ by,

$$g(x) = \begin{cases} x-1 \text{ if } x > 1\\ 1 \text{ if } x = 1 \end{cases}$$

We first show that *g* is not onto.

For this, consider element 1 in co-domain N. It is clear that this element is not an image of any of the elements in domain N.

 $\therefore f$ is not onto.

Now, gof: $\mathbf{N} \rightarrow \mathbf{N}$ is defined by,

$$gof(x) = g(f(x)) = g(x+1) = (x+1) - 1 \qquad \left[x \in \mathbf{N} \Rightarrow (x+1) > 1\right]$$
$$= x$$

Then, it is clear that for $y \in \mathbf{N}$, there exists $x = y \in \mathbf{N}$ such that gof(x) = y.

Hence, gof is onto.

Question 8:

Given a non empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets *A*, *B* in P(*X*), *A*R*B* if and only if $A \subset B$. Is R an equivalence relation on P(*X*)? Justify you answer:

Answer :

Since every set is a subset of itself, ARA for all $A \in P(X)$.

 \therefore R is reflexive.

Let $ARB \Rightarrow A \subset B$.

This cannot be implied to $B \subset A$.

For instance, if $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then it cannot be implied that B is related to A.

 \therefore R is not symmetric.

Further, if *A*R*B* and *B*R*C*, then $A \subset B$ and $B \subset C$.

 $\Rightarrow A \subset C$

 $\Rightarrow ARC$

 \therefore R is transitive.

Hence, R is not an equivalence relation since it is not symmetric.

Question 9:

Given a non-empty set X, consider the binary operation *: $P(X) \times P(X) \rightarrow P(X)$ given by $A * B = A \cap B " A$, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*.

Answer :

It is given that $*: P(X) \times P(X) \to P(X)$ is defined as $A * B = A \cap B \forall A, B \in P(X)$.

We know that $A \cap X = A = X \cap A \ \forall A \in P(X)$.

 $\Rightarrow A * X = A = X * A \ \forall \ A \in \mathbf{P}(X)$

Thus, X is the identity element for the given binary operation *.

Now, an element $A \in P(X)$ is invertible if there exists $B \in P(X)$ such that A * B = X = B * A. (As X is the identity element) i.e., $A \cap B = X = B \cap A$

This case is possible only when A = X = B.

Thus, X is the only invertible element in P(X) with respect to the given operation*.

Hence, the given result is proved.

Question 10:

Find the number of all onto functions from the set $\{1, 2, 3, ..., n\}$ to itself.

Answer :

Onto functions from the set $\{1, 2, 3, ..., n\}$ to itself is simply a permutation on *n* symbols 1, 2, ..., *n*.

Thus, the total number of onto maps from $\{1, 2, ..., n\}$ to itself is the same as the total number of permutations on *n* symbols 1, 2, ..., *n*, which is *n*!.

Question 11:

Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^{-1} of the following functions F from S to T, if it exists.

(i) $F = \{(a, 3), (b, 2), (c, 1)\}$ (ii) $F = \{(a, 2), (b, 1), (c, 1)\}$

Answer :

 $S = \{a, b, c\}, T = \{1, 2, 3\}$

(i) F: $S \rightarrow T$ is defined as:

 $\mathbf{F} = \{(a, 3), (b, 2), (c, 1)\}$

 \Rightarrow F (a) = 3, F (b) = 2, F(c) = 1

Therefore, F^{-1} : $T \rightarrow S$ is given by

$$\mathbf{F}^{-1} = \{(3, a), (2, b), (1, c)\}.$$

(ii) F: $S \rightarrow T$ is defined as:

 $\mathbf{F} = \{(a, 2), (b, 1), (c, 1)\}$

Since F(b) = F(c) = 1, F is not one-one.

Hence, F is not invertible i.e., F^{-1} does not exist.

Question 12:

Consider the binary operations*: $\mathbf{R} \times \mathbf{R} \to \text{and o: } \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ defined as $a \cdot b = |a-b|$ and $a \circ b = a$, " $a, b \in \mathbf{R}$. Show that * is commutative but not associative, o is associative but not commutative. Further, show that " $a, b, c \in \mathbf{R}$, $a^*(b \circ c) = (a \cdot b) \circ (a \cdot c)$. [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.

Answer :

It is given that $*: \mathbb{R} \times \mathbb{R} \to \text{and o: } \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is defined as

$$a * b = |a-b|$$
 and $a \circ b = a$, " $a, b \in \mathbf{R}$.

For $a, b \in \mathbf{R}$, we have:

$$a * b = |a - b|$$

 $b * a = |b - a| = |-(a - b)| = |a - b|$

$$\therefore a * b = b * a$$

 \therefore The operation * is commutative.

It can be observed that,

$$(1*2)*3 = (|1-2|)*3 = 1*3 = |1-3| = 2$$

1*(2*3) = 1*(|2-3|) = 1*1 = |1-1| = 0
$$\therefore (1*2)*3 \neq 1*(2*3) \text{ (where } 1, 2, 3 \in \mathbf{R})$$

 \therefore The operation * is not associative.

Now, consider the operation o:

It can be observed that 1 o 2 = 1 and 2 o 1 = 2.

 \therefore 1 o 2 \neq 2 o 1 (where 1, 2 \in **R**)

∴The operation o is not commutative.

Let $a, b, c \in \mathbf{R}$. Then, we have:

$$(a \circ b) \circ c = a \circ c = a$$

$$a \circ (b \circ c) = a \circ b = a$$

$$\Rightarrow a \circ b) \circ c = a \circ (b \circ c)$$

 \therefore The operation o is associative.

Now, let $a, b, c \in \mathbf{R}$, then we have:

 $a * (b \circ c) = a * b = |a-b|$ (a * b) \circ (a * c) = (|a-b|) \circ (|a-c|) = |a-b|

Hence, $a * (b \circ c) = (a * b) \circ (a * c)$.

Now,

$$1 \circ (2 * 3) = \frac{1 \circ (|2 - 3|) = 1 \circ 1 = 1}{1 \circ (|2 - 3|)}$$

 $(1 \circ 2) * (1 \circ 3) = 1 * 1 = |1 - 1| = 0$

 \therefore 1 o (2 * 3) \neq (1 o 2) * (1 o 3) (where 1, 2, 3 \in **R**)

... The operation o does not distribute over *.

Question 13:

Given a non-empty set X, let *: $P(X) \times P(X) \rightarrow P(X)$ be defined as $A * B = (A - B) \cup (B - A)$, "A, $B \in P(X)$. Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with $A^{-1} = A$. (Hint: $(A - \Phi) \cup (\Phi - A) = A$ and $(A - A) \cup (A - A) = A * A = \Phi$).

Answer :

It is given that $*: P(X) \times P(X) \rightarrow P(X)$ is defined as

 $A * B = (A - B) \cup (B - A) " A, B \in P(X).$

Let $A \in P(X)$. Then, we have:

 $A * \Phi = (A - \Phi) \cup (\Phi - A) = A \cup \Phi = A$

$$\Phi * A = (\Phi - A) \cup (A - \Phi) = \Phi \cup A = A$$

$$\therefore A * \Phi = A = \Phi * A. " A \in P(X)$$

Thus, Φ is the identity element for the given operation*.

Now, an element $A \in P(X)$ will be invertible if there exists $B \in P(X)$ such that

 $A * B = \Phi = B * A$. (As Φ is the identity element)

Now, we observed that $A * A = (A - A) \cup (A - A) = \phi \cup \phi = \phi \quad \forall A \in P(X)$.

Hence, all the elements A of P(X) are invertible with $A^{-1} = A$.

Question 14:

Define a binary operation *on the set $\{0, 1, 2, 3, 4, 5\}$ as

$$a * b = \begin{cases} a+b, & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6 - a being the inverse of a.

Answer :

Let $X = \{0, 1, 2, 3, 4, 5\}$.

The operation * on X is defined as:

 $a * b = \begin{cases} a+b & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$

An element $e \in X$ is the identity element for the operation *, if $a * e = a = e * a \quad \forall a \in X$.

For $a \in X$, we observed that: a * 0 = a + 0 = a $[a \in X \Rightarrow a + 0 < 6]$ 0 * a = 0 + a = a $[a \in X \Rightarrow 0 + a < 6]$ $\therefore a * 0 = a = 0 * a \quad \forall a \in X$

Thus, 0 is the identity element for the given operation *.

An element $a \in X$ is invertible if there exists $b \in X$ such that a * b = 0 = b * a.

i.e.,
$$\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6, & \text{if } a+b \ge 6 \end{cases}$$

i.e.,

a = -b or b = 6 - a

But, $X = \{0, 1, 2, 3, 4, 5\}$ and $a, b \in X$. Then, $a \neq -b$.

 $\therefore b = 6 - a$ is the inverse of $a " a \in X$.

Hence, the inverse of an element $a \in X$, $a \neq 0$ is 6 - a i.e., $a^{-1} = 6 - a$.

Question 15:

Let $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$ and $f, g: A \to B$ be functions defined by $f(x) = x^2 - x, x \in [g(x) = 2|x - \frac{1}{2}| - 1, x \in A]$. A and A and A and A and A and A and B equal?

Justify your answer. (Hint: One may note that two function $f: A \to B$ and $g: A \to B$ such that f(a) = g(a) " $a \in A$, are called equal functions).

Answer :

It is given that $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}.$

Also, it is given that $f, g: A \to B$ are defined by $f(x) = x^2 - x, x \in A$ and $g(x) = 2\left|x - \frac{1}{2}\right| - 1, x \in A$.

It is observed that:

$$f(-1) = (-1)^{2} - (-1) = 1 + 1 = 2$$

$$g(-1) = 2\left|(-1) - \frac{1}{2}\right| - 1 = 2\left(\frac{3}{2}\right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(-1) = g(-1)$$

$$f(0) = (0)^{2} - 0 = 0$$

$$g(0) = 2\left|0 - \frac{1}{2}\right| - 1 = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(0) = g(0)$$

$$f(1) = (1)^{2} - 1 = 1 - 1 = 0$$

$$g(1) = 2\left|1 - \frac{1}{2}\right| - 1 = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(1) = g(1)$$

$$f(2) = (2)^{2} - 2 = 4 - 2 = 2$$

$$g(2) = 2\left|2 - \frac{1}{2}\right| - 1 = 2\left(\frac{3}{2}\right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(2) = g(2)$$

$$\therefore f(a) = g(a) \quad \forall a \in A$$

Hence, the functions f and g are equal.

Question 16:

Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

(A) 1 (B) 2 (C) 3 (D) 4

Answer :

The given set is $A = \{1, 2, 3\}$.

The smallest relation containing (1, 2) and (1, 3) which is reflexive and symmetric, but not transitive is given by:

 $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1)\}$

This is because relation R is reflexive as $(1, 1), (2, 2), (3, 3) \in \mathbb{R}$.

Relation R is symmetric since $(1, 2), (2, 1) \in \mathbb{R}$ and $(1, 3), (3, 1) \in \mathbb{R}$.

But relation R is not transitive as $(3, 1), (1, 2) \in \mathbb{R}$, but $(3, 2) \notin \mathbb{R}$.

Now, if we add any two pairs (3, 2) and (2, 3) (or both) to relation R, then relation R will become transitive.

Hence, the total number of desired relations is one.

The correct answer is A.

Question 17:

Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1, 2) is

(A) 1 (B) 2 (C) 3 (D) 4

Answer :

It is given that $A = \{1, 2, 3\}$.

The smallest equivalence relation containing (1, 2) is given by,

 $R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$

Now, we are left with only four pairs i.e., (2, 3), (3, 2), (1, 3), and (3, 1).

If we odd any one pair [say (2, 3)] to R_1 , then for symmetry we must add (3, 2). Also, for transitivity we are required to add (1, 3) and (3, 1).

Hence, the only equivalence relation (bigger than R_1) is the universal relation.

This shows that the total number of equivalence relations containing (1, 2) is two.

The correct answer is B.

Question 18:

Let $f: \mathbf{R} \to \mathbf{R}$ be the Signum Function defined as

$$f(x) = \begin{cases} 1, \ x > 0\\ 0, \ x = 0\\ -1, \ x < 0 \end{cases}$$

and $g: \mathbf{R} \to \mathbf{R}$ be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does *fog* and *gof* coincide in (0, 1]?

Answer :

It is given that,

$$f(x) = \begin{cases} 1, & x > 0\\ 0, & x = 0\\ -1, & x < 0 \end{cases}$$

Also, g: $\mathbf{R} \to \mathbf{R}$ is defined as g(x) = [x], where [x] is the greatest integer less than or equal to x.

Now, let
$$x \in (0, 1]$$
.

Then, we have:

$$[x] = 1$$
 if $x = 1$ and $[x] = 0$ if $0 < x < 1$.

$$\therefore fog(x) = f(g(x)) = f([x]) = \begin{cases} f(1), & \text{if } x = 1 \\ f(0), & \text{if } x \in (0,1) \end{cases} = \begin{cases} 1, & \text{if } x = 1 \\ 0, & \text{if } x \in (0,1) \end{cases}$$

$$gof(x) = g(f(x))$$

= $g(1)$ [$x > 0$]
= $[1] = 1$

Thus, when $x \in (0, 1)$, we have fog(x) = 0 and gof(x) = 1.

Hence, fog and gof do not coincide in (0, 1].

Question 19:

Number of binary operations on the set $\{a, b\}$ are

(A) 10 (B) 16 (C) 20 (D) 8

Answer :

A binary operation * on $\{a, b\}$ is a function from $\{a, b\} \times \{a, b\} \rightarrow \{a, b\}$

i.e., * is a function from $\{(a, a), (a, b), (b, a), (b, b)\} \rightarrow \{a, b\}.$

Hence, the total number of binary operations on the set $\{a, b\}$ is 2^4 i.e., 16.

The correct answer is B.