

Question 1:

Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of *x*-axis.

Answer :

If \vec{r} is a unit vector in the XY-plane, then $\vec{r} = \cos\theta \hat{i} + \sin\theta \hat{j}$.

Here, θ is the angle made by the unit vector with the positive direction of the x-axis.

Therefore, for $\theta = 30^{\circ}$:

$$\vec{r} = \cos 30^{\circ}\hat{i} + \sin 30^{\circ}\hat{j} = \frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$$

Hence, the required unit vector is
$$\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$$
.

Question 2:

Find the scalar components and magnitude of the vector joining the points

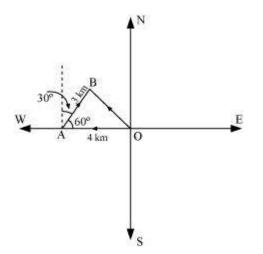
$$P(x_1, y_1, z_1)$$
 and $Q(x_2, y_2, z_2)$

Answer :

The vector joining the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ can be obtained by,

$$\overrightarrow{PQ} = \text{Position vector of } Q - \text{Position vector of } P \\ = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k} \\ \left| \overrightarrow{PQ} \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Hence, the scalar components and the magnitude of the vector joining the given points are respectively $\{(x_2 - x_1), (y_2 - y_1), (z_2 - z_1)\}$ and $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$.


Question 3:

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

Answer :

Let O and B be the initial and final positions of the girl respectively.

Then, the girl's position can be shown as:

Now, we have:

$$\overrightarrow{OA} = -4\hat{i}$$

$$\overrightarrow{AB} = \hat{i} \left| \overrightarrow{AB} \right| \cos 60^\circ + \hat{j} \left| \overrightarrow{AB} \right| \sin 60^\circ$$

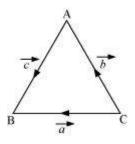
$$= \hat{i} \cdot 3 \times \frac{1}{2} + \hat{j} \cdot 3 \times \frac{\sqrt{3}}{2}$$

$$= \frac{3}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

By the triangle law of vector addition, we have:

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$
$$= \left(-4\hat{i}\right) + \left(\frac{3}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}\right)$$
$$= \left(-4 + \frac{3}{2}\right)\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$
$$= \left(\frac{-8+3}{2}\right)\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$
$$= \frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

Hence, the girl's displacement from her initial point of departure is


$$\frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

Question 4:

If $\vec{a} = \vec{b} + \vec{c}$, then is it true that $|\vec{a}| = |\vec{b}| + |\vec{c}|$? Justify your answer.

Answer :

In $\triangle ABC$, let $\overrightarrow{CB} = \vec{a}$, $\overrightarrow{CA} = \vec{b}$, and $\overrightarrow{AB} = \vec{c}$ (as shown in the following figure).

Now, by the triangle law of vector addition, we have $\vec{a} = \vec{b} + \vec{c}$.

It is clearly known that $|\vec{a}|, |\vec{b}|$, and $|\vec{c}|$ represent the sides of $\triangle ABC$.

Also, it is known that the sum of the lengths of any two sides of a triangle is greater than the third side.

$$\therefore \left| \vec{a} \right| < \left| \vec{b} \right| + \left| \vec{c} \right|$$

Hence, it is not true that $\left|\vec{a}\right| = \left|\vec{b}\right| + \left|\vec{c}\right|$.

Question 5:

Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

Answer :

$$x(\hat{i}+\hat{j}+\hat{k})$$
 is a unit vector if $\left|x(\hat{i}+\hat{j}+\hat{k})\right|=1$

Now,

$$\begin{vmatrix} x(\hat{i} + \hat{j} + \hat{k}) \end{vmatrix} = 1$$

$$\Rightarrow \sqrt{x^2 + x^2 + x^2} = 1$$

$$\Rightarrow \sqrt{3x^2} = 1$$

$$\Rightarrow \sqrt{3} x = 1$$

$$\Rightarrow x = \pm \frac{1}{\sqrt{3}}$$

Hence, the required value of x is $\pm \frac{1}{\sqrt{3}}$.

Question 6:

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$

Answer :

We have,

$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$

Let \vec{c} be the resultant of \vec{a} and \vec{b} .

Then,

$$\vec{c} = \vec{a} + \vec{b} = (2+1)\hat{i} + (3-2)\hat{j} + (-1+1)\hat{k} = 3\hat{i} + \hat{j}$$

$$\therefore |\vec{c}| = \sqrt{3^2 + 1^2} = \sqrt{9+1} = \sqrt{10}$$

$$\therefore \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{(3\hat{i} + \hat{j})}{\sqrt{10}}$$

Hence, the vector of magnitude 5 units and parallel to the resultant of vectors \vec{a} and \vec{b} is

$$\pm 5 \cdot \hat{c} = \pm 5 \cdot \frac{1}{\sqrt{10}} \left(3\hat{i} + \hat{j} \right) = \pm \frac{3\sqrt{10}\hat{i}}{2} \pm \frac{\sqrt{10}}{2}\hat{j}.$$

Question 7:

If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.

Answer :

We have,

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \ \vec{b} = 2\hat{i} - \hat{j} + 3\hat{k} \text{ and } \vec{c} = \hat{i} - 2\hat{j} + \hat{k}$$

$$2\vec{a} - \vec{b} + 3\vec{c} = 2\left(\hat{i} + \hat{j} + \hat{k}\right) - \left(2\hat{i} - \hat{j} + 3\hat{k}\right) + 3\left(\hat{i} - 2\hat{j} + \hat{k}\right)$$

$$= 2\hat{i} + 2\hat{j} + 2\hat{k} - 2\hat{i} + \hat{j} - 3\hat{k} + 3\hat{i} - 6\hat{j} + 3\hat{k}$$

$$= 3\hat{i} - 3\hat{j} + 2\hat{k}$$

$$\left|2\vec{a} - \vec{b} + 3\vec{c}\right| = \sqrt{3^2 + (-3)^2 + 2^2} = \sqrt{9 + 9 + 4} = \sqrt{22}$$

Hence, the unit vector along $2\vec{a} - \vec{b} + 3\vec{c}$ is

$$\frac{2\vec{a}-\vec{b}+3\vec{c}}{\left|2\vec{a}-\vec{b}+3\vec{c}\right|} = \frac{3\hat{i}-3\hat{j}+2\hat{k}}{\sqrt{22}} = \frac{3}{\sqrt{22}}\hat{i} - \frac{3}{\sqrt{22}}\hat{j} + \frac{2}{\sqrt{22}}\hat{k}.$$

Question 7:

If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.

Answer :

We have,

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \ \vec{b} = 2\hat{i} - \hat{j} + 3\hat{k} \text{ and } \vec{c} = \hat{i} - 2\hat{j} + \hat{k}$$

$$2\vec{a} - \vec{b} + 3\vec{c} = 2\left(\hat{i} + \hat{j} + \hat{k}\right) - \left(2\hat{i} - \hat{j} + 3\hat{k}\right) + 3\left(\hat{i} - 2\hat{j} + \hat{k}\right)$$

$$= 2\hat{i} + 2\hat{j} + 2\hat{k} - 2\hat{i} + \hat{j} - 3\hat{k} + 3\hat{i} - 6\hat{j} + 3\hat{k}$$

$$= 3\hat{i} - 3\hat{j} + 2\hat{k}$$

$$\left|2\vec{a} - \vec{b} + 3\vec{c}\right| = \sqrt{3^2 + (-3)^2 + 2^2} = \sqrt{9 + 9 + 4} = \sqrt{22}$$

Hence, the unit vector along $2\vec{a} - \vec{b} + 3\vec{c}$ is

$$\frac{2\vec{a}-\vec{b}+3\vec{c}}{\left|2\vec{a}-\vec{b}+3\vec{c}\right|} = \frac{3\hat{i}-3\hat{j}+2\hat{k}}{\sqrt{22}} = \frac{3}{\sqrt{22}}\hat{i} - \frac{3}{\sqrt{22}}\hat{j} + \frac{2}{\sqrt{22}}\hat{k}.$$

Question 9:

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2\vec{a}+\vec{b})$ and $(\vec{a}-3\vec{b})$ externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.

Answer :

It is given that $\overrightarrow{OP} = 2\vec{a} + \vec{b}, \ \overrightarrow{OQ} = \vec{a} - 3\vec{b}$

It is given that point R divides a line segment joining two points P and Q externally in the ratio 1: 2. Then, on using the section formula, we get:

$$\overrightarrow{\text{OR}} = \frac{2(2\vec{a}+\vec{b}) - (\vec{a}-3\vec{b})}{2-1} = \frac{4\vec{a}+2\vec{b}-\vec{a}+3\vec{b}}{1} = 3\vec{a}+5\vec{b}$$

Therefore, the position vector of point R is $3\vec{a} + 5\vec{b}$.

$$\overrightarrow{OQ} + \overrightarrow{OR}$$

Position vector of the mid-point of RQ = 2

$$= \frac{\left(\vec{a} - 3\vec{b}\right) + \left(3\vec{a} + 5\vec{b}\right)}{2}$$
$$= 2\vec{a} + \vec{b}$$
$$= \overrightarrow{OP}$$

Hence, P is the mid-point of the line segment RQ.

Question 10:

The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$.

Find the unit vector parallel to its diagonal. Also, find its area.

Answer :

Adjacent sides of a parallelogram are given as: $\vec{a} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} - 3\hat{k}$

Then, the diagonal of a parallelogram is given by $\vec{a} + \vec{b}$.

$$\vec{a} + \vec{b} = (2+1)\hat{i} + (-4-2)\hat{j} + (5-3)\hat{k} = 3\hat{i} - 6\hat{j} + 2\hat{k}$$

Thus, the unit vector parallel to the diagonal is

$$\frac{\vec{a}+\vec{b}}{\left|\vec{a}+\vec{b}\right|} = \frac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{3^{2}+(-6)^{2}+2^{2}}} = \frac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{9+36+4}} = \frac{3\hat{i}-6\hat{j}+2\hat{k}}{7} = \frac{3}{7}\hat{i}-\frac{6}{7}\hat{j}+\frac{2}{7}\hat{k}$$

 \therefore Area of parallelogram ABCD = $\left| \vec{a} \times \vec{b} \right|$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 5 \\ 1 & -2 & -3 \end{vmatrix}$$
$$= \hat{i} (12+10) - \hat{j} (-6-5) + \hat{k} (-4+4)$$
$$= 22\hat{i} + 11\hat{j}$$
$$= 11(2\hat{i} + \hat{j})$$
$$\therefore |\vec{a} \times \vec{b}| = 11\sqrt{2^2 + 1^2} = 11\sqrt{5}$$

Hence, the area of the parallelogram is $11\sqrt{5}$ square units

Question 11:

Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

Answer :

Let a vector be equally inclined to axes OX, OY, and OZ at angle α .

Then, the direction cosines of the vector are $\cos \alpha$, $\cos \alpha$, and $\cos \alpha$.

Now, $\cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$ $\Rightarrow 3\cos^2 \alpha = 1$ $\Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$

Hence, the direction cosines of the vector which are equally inclined to the axes are

$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

Question 12:

Let
$$\vec{a} = \hat{\vec{a}} + 4\hat{j}\vec{b}$$
, $2\hat{k}$, $\vec{l}\vec{c}$, $\vec{d} = 15\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{d} which is perpendicular

Answer :

Let $\vec{d} = d_1 \hat{i} + d_2 \hat{j} + d_3 \hat{k}$.

Since \vec{d} is perpendicular to both \vec{a} and \vec{b} , we have:

$$\vec{d} \cdot \vec{a} = 0$$

$$\Rightarrow d_1 + 4d_2 + 2d_3 = 0 \qquad \dots(i)$$

And,

$$\vec{d} \cdot \vec{b} = 0$$

$$\Rightarrow 3d_1 - 2d_2 + 7d_3 = 0 \qquad \dots(ii)$$

Also, it is given that:

$$\vec{c} \cdot \vec{d} = 15$$

 $\Rightarrow 2d_1 - d_2 + 4d_3 = 15$...(iii)

On solving (i), (ii), and (iii), we get:

$$d_1 = \frac{160}{3}, d_2 = -\frac{5}{3} \text{ and } d_3 = -\frac{70}{3}$$

$$\therefore \vec{d} = \frac{160}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k} = \frac{1}{3}\left(160\hat{i} - 5\hat{j} - 70\hat{k}\right)$$

Hence, the required vector is $\frac{1}{3} \left(160\hat{i} - 5\hat{j} - 70\hat{k} \right)$.

Question 12:

Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and $\vec{c} \cdot \vec{d} = 15$.

Answer :

Let
$$\vec{d} = d_1 \hat{i} + d_2 \hat{j} + d_3 \hat{k}$$

Since \vec{d} is perpendicular to both \vec{a} and \vec{b} , we have:

$$\vec{d} \cdot \vec{a} = 0$$

$$\Rightarrow d_1 + 4d_2 + 2d_3 = 0 \qquad \dots(i)$$

And,

$$\vec{d} \cdot \vec{b} = 0$$

$$\Rightarrow 3d_1 - 2d_2 + 7d_3 = 0 \qquad \dots(ii)$$

Also, it is given that:

 $\vec{c} \cdot \vec{d} = 15$ $\Rightarrow 2d_1 - d_2 + 4d_3 = 15$...(iii)

On solving (i), (ii), and (iii), we get:

$$d_1 = \frac{160}{3}, d_2 = -\frac{5}{3} \text{ and } d_3 = -\frac{70}{3}$$
$$\therefore \vec{d} = \frac{160}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k} = \frac{1}{3}\left(160\hat{i} - 5\hat{j} - 70\hat{k}\right)$$

Hence, the required vector is $\frac{1}{3} (160\hat{i} - 5\hat{j} - 70\hat{k})$

Question 14:

If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c} .

Answer :

Since \vec{a}, \vec{b} , and \vec{c} are mutually perpendicular vectors, we have

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0.$$

It is given that:

$$\left|\vec{a}\right| = \left|\vec{b}\right| = \left|\vec{c}\right|$$

Let vector $\vec{a} + \vec{b} + \vec{c}$ be inclined to \vec{a}, \vec{b} , and \vec{c} at angles θ_1 , θ_2 , and θ_3 respectively. Then, we have:

$$\begin{aligned} \cos \theta_{1} &= \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} \\ &= \frac{\left|\vec{a}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} \qquad \left[\vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a} = 0\right] \\ &= \frac{\left|\vec{a}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|} \\ \cos \theta_{2} &= \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{b}\right|} = \frac{\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \cdot \left|\vec{b}\right|} \\ &= \frac{\left|\vec{b}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \cdot \left|\vec{b}\right|} \qquad \left[\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{b} = 0\right] \\ &= \frac{\left|\vec{b}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|} \\ \cos \theta_{3} &= \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} = \frac{\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} \\ &= \frac{\left|\vec{c}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} \qquad \left[\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c} = 0\right] \\ &= \frac{\left|\vec{c}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|} \end{aligned}$$

Now, as $|\vec{a}| = |\vec{b}| = |\vec{c}|$, $\cos \theta_1 = \cos \theta_2 = \cos \theta_3$.

 $\therefore \theta_1 = \theta_2 = \theta_3$

Hence, the vector $\left(\vec{a} + \vec{b} + \vec{c}\right)_{\text{is equally inclined to }} \vec{a}, \vec{b}$, and \vec{c}_{\perp}

Question 15:

Prove that $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$, if and only if \vec{a} , \vec{b} are perpendicular, given $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$.

Answer :

 $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$ $\Leftrightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2 \qquad \text{[Distributivity of scalar products over addition]}$ $\Leftrightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \qquad [\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \text{ (Scalar product is commutative)}]$ $\Leftrightarrow 2\vec{a} \cdot \vec{b} = 0$ $\Leftrightarrow \vec{a} \cdot \vec{b} = 0$ $\therefore \vec{a} \text{ and } \vec{b} \text{ are perpendicular.} \qquad [\vec{a} \neq \vec{0}, \ \vec{b} \neq \vec{0} \text{ (Given)}]$

Question 16:

If θ is the angle between two vectors \vec{a} and \vec{b} , then $\vec{a}.\vec{b} \ge 0$ only when

(A)
$$0 < \theta < \frac{\pi}{2}$$
 (B) $0 \le \theta \le \frac{\pi}{2}$

(C)
$$0 < \theta < \pi$$
 (D) $0 \le \theta \le \pi$

Answer :

Let θ be the angle between two vectors \vec{a} and \vec{b} .

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors so that $|\vec{a}|$ and $|\vec{b}|$ are positive

It is known that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.

$$\therefore \vec{a} \cdot \vec{b} \ge 0$$

$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta \ge 0$$

$$\Rightarrow \cos \theta \ge 0 \qquad [|\vec{a}| \text{ and } |\vec{b}| \text{ are positive}]$$

$$\Rightarrow 0 \le \theta \le \frac{\pi}{2}$$

Hence, $\vec{a}.\vec{b} \ge 0$ when $0 \le \theta \le \frac{\pi}{2}$.

The correct answer is B.

Question 17:

Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if

(A)
$$\theta = \frac{\pi}{4}$$
 (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$ (D) $\theta = \frac{2\pi}{3}$

Answer :

Let \vec{a} and \vec{b} be two unit vectors and θ be the angle between them.

Then, $\left| \vec{a} \right| = \left| \vec{b} \right| = 1$.

Now, $\vec{a} + \vec{b}$ is a unit vector if $|\vec{a} + \vec{b}| = 1$.

$$\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = 1$$

$$\Rightarrow \left(\vec{a} + \vec{b} \right)^2 = 1$$

$$\Rightarrow \left(\vec{a} + \vec{b} \right) \cdot \left(\vec{a} + \vec{b} \right) = 1$$

$$\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 1$$

$$\Rightarrow \left| \vec{a} \right|^2 + 2\vec{a} \cdot \vec{b} + \left| \vec{b} \right|^2 = 1$$

$$\Rightarrow 1^2 + 2 \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta + 1^2 = 1$$

$$\Rightarrow 1 + 2 \cdot 1 \cdot 1 \cos \theta + 1 = 1$$

$$\Rightarrow \cos \theta = -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

Hence, $\vec{a} + \vec{b}$ is a unit vector if $\theta = \frac{2\pi}{3}$.

The correct answer is D.

Question 18:

The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})_{is}$

(A) 0 (B) –1 (C) 1 (D) 3

Answer :

$$\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$$

$$= \hat{i} \cdot \hat{i} + \hat{j} \cdot (-\hat{j}) + \hat{k} \cdot \hat{k}$$

$$= 1 - \hat{j} \cdot \hat{j} + 1$$

$$= 1 - 1 + 1$$

$$= 1$$

The correct answer is C.

Question 19:

If θ is the angle between any two vectors \vec{a} and \vec{b} , then $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ when θ is equal to

(A) 0 (B)
$$\frac{\pi}{4}$$
 (C) $\frac{\pi}{2}$ (D) π

Answer :

Let θ be the angle between two vectors \vec{a} and \vec{b} .

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors, so that $|\vec{a}|$ and $|\vec{b}|$ are positive.

$$\begin{vmatrix} \vec{a} \cdot \vec{b} \\ = \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$$

$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta$$

$$\Rightarrow \cos \theta = \sin \theta \qquad [|\vec{a}| \text{ and } |\vec{b}| \text{ are positive}]$$

$$\Rightarrow \tan \theta = 1$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, $\left|\vec{a}.\vec{b}\right| = \left|\vec{a}\times\vec{b}\right|$ when θ is equal to $\frac{\pi}{4}$.

The correct answer is B.